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Scientific Goals of Simulation

What controls the stratospheric water vapor —
what seems to be important and what is
unimportant — in the model world?

Where is dehydration taking place in the
stratosphere according to the assimilation
models?

How do models differ their determination of
stratospheric water vapor?

How does our model compare with satellite
observations?




Anomalies for the SAGE,
HALOE, and MLS data
sets are computed
separately and then
adjusted so the
anomalies are equal on
average during overlap
periods.
2005: HALOE and MLS
2000-2005: HALOE and
SAGE
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» Satellites roughly agree
* Trends are confusing

* Based on recent trends H20 will be ~8 ppmv by 2050 and we will all die.




Our Model of Stratospheric H,O

 We use diabatic Lagrangian simulation of stratospheric water vapor
using long forward parcel integrations — basically forward domain fill

e Regular grid of parcels are initiated at 360K hPa, 2° spacing +40° lat.
* New grid is initiated each day

* Parcels falling below ~10 km (250 hPa) are removed

* Parcels reaching the top (~0.2 hPa, 60 km) are removed
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Water vapor

Parcels are initiated with 50 ppmv H,0.

At each trajectory time step, parcels are dehydrated to

frost point value when water vapor exceeds some
relative humidity (RH) threshold (e.g. RH > 104%).

Convective injection of water vapor tied to and MLS ice
observations and OLR [Dessler et al., 2007] .

Gravity wave temperature perturbations based on
Jensen and Pfister [2004].

Methane photolysis is included (increases water vapor),
methane initialized at 1.75 ppmv, rates from Jackman 2D
model.

Last (final) and current saturation locations are book-
kept



Tuning Stratospheric Water Vapor: Three Knobs

» Observations show that cloud formation in the TTL often occurs in super-
saturated environment — we can change the dehydration trigger to account
for supersaturation

» Convective injection produces an overall increase in stratospheric water
vapor by saturating sub-saturated layers

» Gravity wave temperature perturbations cause a decrease in water vapor
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Sensitivity Tests Summary

Convection adds ~0.5 ppmv (once a day) to global
mean lower stratospheric water vapor

Gravity waves subtract ~0.2-0.3 ppmv
100% -> 104% RH saturation adds 0.2 ppmv

Convection and super saturation are not linearly
additive...

Increasing the time resolution decreases water vapor
somewhat — replicates gravity wave dehydration

ERAi and MERRA at full time resolution at 104% RH
with C+ G are dry biased relative to MLS obs.

CFSR is wet biased — tropopause too warm



Comparison with MLS
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Zonal mean water
vapor field for
12/30/2009 compared
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MILS tape recorder
minimum is moving
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MERRA. Implies
model heating rates
are too weak.

MERRA



Comparison with MLS

MLS H,0 Jan. 2004—-2009 Monthly Mean

6
5 year average

Jan. water vapor at
85 hPa.

ppmv
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Final Dehydration Point

This is the point on the path where stratospheric water
vapor is fixed. It is distinct from Entry and Release points.

Liu et al. calls this the Lagrangian Dry Point (LDP) — there
is no difference between the two.
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Location of FDH Points

Dehydration Location Density — All Seasons
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Winter — Dehydration zones are split Summer— Dehydration over east Asia
across the equator. SA contributes and N. Australia and across Pacific

Dehydration Location Density — NH Winter Dehydration Location Density — NH Summer
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Role of Methane Photolysis
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HDO — Convective Injection

The model includes HDO injection though ice lofting and methane as source of HDO.

DJF average of 4 years of data and MERRA model.
ACE DJF HDO

Height (km)

-40 —EB0 =30 0 30 60
Latitude

Trajectory model DJF HDO

Height (km)

v,

"

-90 —B0 -30 0 30 60
Latitude

w
o

_—

Increase due to
photolysis of CH;D

Model does not

2 photolyze enough
methane due to lid so
HDO not as high in

model

ppbv

see Randel et al. [2011]



Zonal Mean H,0O at 100 hPa
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Long Term Integration



Tropical Tape Recorder
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Correlation with MLS vs Altitude
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Summary

Results from domain filling forward-trajectory technique compare
favorably with MLS water observations (and HALOE)

Three knobs in this model
— Supersaturation —increases H,0

— Convective injection —increases H,O especially in NH summer, needed for HDO
— Gravity waves — decreases H,0

Assessment of FDPs provides some surprising results

— More that 20% of winter final dehydration events are occurring over South America
(~50% over TWP and East Asia). Warmer tropopause there.

— MERRA, ERAi and CSFR broadly agree, but MERRA shows more dehydration in
tropical SH during winter than ERAi and CSFR — probably an error in MERRA.

— Parcels older than 2 months show little evidence of FDH over Tibet

Stratospheric tropical assent rates differ MERRA slowest, ERAI
highest.

Extra-tropical dynamics more complex — pipe leakage vs. methane
photolysis



What can ATTREX help with?

How should we best parameterize super
saturation? Is it globally the same? Will one

number do?
How can we improve convective moistening?

How important (and what is the magnitude) of
gravity wave fluctuations?

Is dehydration really prevalent in other
regions (e.g. Northern Australia, South
America) as the models indicate?



Backup



Gravity Waves
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Some Experiments

Experiment H,O (global mean Comment

(MERRA Daily unless specified) 18-28 km)

MLS Observed 4.531+0.3 ppmv Perfect in every way

100% saturation 4.0 ppmv Too dry

104% saturation 4.25 ppmv Still too dry —adds 0.25 ppmv
104% + Convection 4.7 ppmv Now too wet - adds 0.45 ppmv
100% + Convection +1xG waves 4.48 ppmv Closer - GWs subtract 0.17 ppmv
104% + Convection+ 1xG waves 4.53 ppmv Nailed it.

CSFR 104% + Convection + 1xG 4.89 ppmv Too wet, tropopause is too warm.
ERAI 6 hr 104% + Convection + 1xG  4.13 ppmv Too Dry

MERRA 3hr, 104% + 1xG 3.73 ppmv Way too dry

ERAI 6 hr, 104% + 1xG 3.35 ppmv



Experiments

MODEL 100% 104% 104%+C 104% +G | 104%+C+G

MERRAD (~4.0) 4.5
MERRA 3.7

ERAI 8 3.3 4.1
CFSR 8 4.9

MLS 4.5 4.5 4.5 4.5 4.5



Trends at Eq.
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Normalized to MLS Zonal Mean
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How does model compare to MLS Tropical H,O?

No Convective Injection Convective Injection
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