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Abstract 

Balloonsonde measurements of water vapor and ozone using the Cryogenic Frostpoint 

Hygrometer (CFH) and electrochemical concentration cell (ECC) ozonesondes were 

made at Alajuela [10.0°N, 84.2°W] during two NASA airborne campaigns: the Tropical 

Convective Systems and Processes (TCSP) mission in July 2005 and the Tropical 

Composition Clouds Climate Coupling (TC4) mission, July-August 2007.  In addition 

high resolution radiosondes were launched four times daily at the same site from mid-

June through mid-August in both years. The upper troposphere was frequently saturated, 

sometimes in layers with stratospheric levels of ozone and at other times with low ozone 

indicative of uplifted tropospheric layers, and dehydration near the cold point tropopause 

(CPT) was observed in many profiles. Both ozone and water vapor displayed large 

increases of variability above 350 K due to upward propagation of mixed Rossby-gravity 

waves.  As a result of these waves, CPT water vapor saturation mixing ratios from the 

radiosonde record varied from less than 2 to greater than 8 ppmv, and CFH water vapor 

measurements at the CPT show a similar range about a mean of 5.8 ppmv for the two 

campaigns. Despite the large temporal variability in cold point water vapor mixing and 

saturation mixing ratios, it is found that dehydration of nascent stratospheric air occurred 

no higher than a kilometer above the mean level of the CPT at 16.6 km and ~375 K. This 

dehydration is predominantly the result of cooling in forced ascent by the equatorial 

waves in concert with overall upwelling in the upper troposphere.
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The means by which water vapor is transported into the tropical lower stratosphere 

has been a very lively subject of debate since Danielsen [1982] and Newell and Gould-

Stewart [1981 presented different views of the relative roles of deep convection and of 

larger-scale lifting and radiative heating in tropical stratosphere-troposphere exchange 

(STE).  These papers were motivated in part by the observations of the annual cycle of 

tropical tropopause temperature and its relationship to the spatial and seasonal 

distribution of deep convection in the tropics [Reed and Vleck, 1969; Reid and Gage, 

1981; Yulaeva et al., 1994; Reid and Gage, 1996].  However, it was Mote et al. [1996] 

who first conclusively showed that the annual cycle of the temperature at the tropical 

tropopause imprints a coherent signal on the water vapor content in the tropical 

stratosphere. This observation and subsequent refinements using much longer satellite 

records impose powerful constraints on estimates not only of the tropical upwelling rate 

and the mixing into the tropics from the middle latitudes [Mote et al., 1998; Schoeberl et 

al., 2008], but also on estimates of the effective mixing ratio of water as it passes 

irreversibly through the tropical tropopause and enters the tropical stratospheric ‘pipe’ 

[Plumb and Ko, 1992].   

Despite these advances in our understanding of the large-scale circulation in the 

tropical stratosphere, the remoteness and coldness of the tropical tropopause environment 

make difficult direct observation of the physical processes that lead to dehydration and 

STE.  Nevertheless, as shown by Wang et al. [1996], thin cirrus is present at or near the 

tropopause over large regions of the tropics year round, and work by Gettelman et al. 

[2002] and Liu and Zipser [2005] demonstrated that deep convective ascent to and 
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through the tropical tropopause is a relatively rare event. These observations provide 

support for a range of stratosphere-troposphere exchange processes occurring on scales 

greater than the convective. For example, Sherwood and Dessler [2001] advocated a mix 

of convective overshooting and subsequent lofting at larger scales. Recently, Corti et al. 

[2006] have investigated upwelling in large convective anvil systems, and the 

dehydration of layers hydrated upstream by deep convection and lifted by large-scale 

ascent or tropical waves has been studied by Jensen et al. [1996], Hartmann et al. [2001], 

Holton and Gettelman [2001], and  Pfister et al. [2001]. 

Vömel et al. [2002] analyzed balloonsonde measurements of water vapor and ozone at 

diverse locations in the tropics, including the western Pacific warm pool, the eastern 

equatorial Pacific, and South America. They found supersaturation in the upper 

troposphere under a wide range of conditions and concluded that tropopause dehydration 

was occurring not only due to rapid ascent in deep convective systems, but also through 

slow ascent and lifting by the passage of Kelvin waves [Fujiwara et al., 2001].   

In this paper we report on two extended campaigns of balloon-borne measurements of 

water vapor and ozone launched from the radiosonde site of the National Meteorological 

Institute of Costa Rica (IMN) at Alajuela [10.0°N, 84.2°W].  These accompanied the 

NASA Tropical Convective System and Processes (TCSP) airborne mission in July 2005 

[Halverson et al., 2007] and the NASA Tropical Composition, Cloud and Climate 

Coupling (TC4) experiment in July and August 2007 [Toon et al., this issue].  During 

these two campaigns a total of 38 soundings were made with a payload that included the 

University of Colorado cryogenic frostpoint hygrometer (CFH) [Vömel et al., 2007a] and 

an ECC ozonesonde [Komhyr et al., 1995].  The CFH is recognized as a reference 
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instrument for water vapor measurements in the cold environment near the tropical 

tropopause and in the lower stratosphere and displays excellent agreement with the Aura 

MLS satellite water vapor measurement [Vömel, et al., 2007b].   

The TCSP and TC4 campaign CFH/ECC datasets provide an unprecedented 

opportunity to examine the short timescale variability of the structure of water vapor and 

ozone in the tropical upper troposphere and lower stratosphere (UT/LS) during periods of 

widespread regional convection.  We place our analysis in the context of the evolution of 

the dynamical structure of the UT/LS using four-times-daily radiosondes launched from 

the IMN site in campaigns concurrent with the water vapor and ozone balloonsondes. 

These radiosonde data allow us to examine the dominant role of convectively-driven 

equatorial waves in the variation of the local tropical tropopause temperature and the 

control of the effective water vapor mixing ratio of air entering the stratosphere in the 

region. 

Highwood and Hoskins [1998] introduced the term Tropical Tropopause Layer (TTL) 

to highlight the depth of the transition from the troposphere to the stratosphere in the 

tropics and the range of physical processes that determine its vertical structure.  Inasmuch 

as the TTL is inherently a statistical entity defined in terms of temporal and spatial 

averages, in this study we do not try to refine the definition of the TTL per se; our data 

are limited to one location and to one particular time of the year.  For this reason we will 

we refrain from interpretation of particular features in our analysis in terms of the “TTL”, 

and will use the more general term UT/LS to refer to the layer encompassing the tropical 

cold point tropopause (CPT).  Nevertheless, the temperature, water vapor and ozone 
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profile data examined here speak strongly to the nature of the variability within the TTL, 

independent of its definition.   

In Section 2 of this paper we describe the balloonsonde and radiosonde data presented 

in the paper. Section 3 examines the mean structure and variability of temperature, ozone 

and water vapor from the CFH/ECC sondes in the two campaigns, while Section 4 

focuses on the detailed structure of six representative balloon soundings in the TCSP 

campaign. In Section 5 we examine wave-induced variability in the UT/LS and its 

relationship to tropopause temperature using the radiosonde temperature and wind data. 

Section 6 summarizes the results and presents conclusions.  

2.  Data 

The Ticosonde/Aura-TCSP (TCSP) balloonsonde project ran from June through 

August 2005, and the Ticosonde/TC4 project June through August 2007.  Each consisted 

of two concurrent balloonsonde campaigns with launches from Juan Santamaria 

International Airport, Alajuela, Costa Rica [10.0°N, 84.22°W]: (a) a series of CFH/ECC 

balloonsondes to measure profiles of water vapor and ozone, typically near local noon but 

also with night flights, and (b) a program of 4-times daily radiosonde launches. The latter 

began in mid-June and spanned periods of at least two months while the intensive water 

vapor and ozone profiling took place over periods of two-and-one-half weeks and a 

month respectively with 23 CFH/ECC ascents during TCSP and 15 during TC4.   

a. Water vapor-ozone balloonsondes 

Profiles of water vapor and ozone to the middle stratosphere were measured with a 

balloon payload combining the CFH with the ECC ozonesonde; a Garmin GPS provided 

winds. The CFH is a lightweight (400-g) microprocessor-controlled instrument and 
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operates on the chilled-mirror principle using a cryogenic liquid as cooling agent.  It 

includes several improvements over the similar NOAA/CMDL instrument [Vömel et al., 

2002] allowing it to measure water vapor continuously from the surface to about 28 km 

altitude. The accuracy in the troposphere is better than 5%, and the stratospheric accuracy 

is better than 10%. The CFH is capable of measuring water vapor inside clouds, but may 

occasionally suffer from an artifact in which the optical detector collects water or ice. 

This condition leads to a malfunction of the instrument controller that is easily identified, 

and thus can be screened out of the processed data.  

The ECC ozonesonde measures ozone by reaction with I2 in a weak aqueous solution, 

the electrical current generated being directly proportional to the amount of ozone 

pumped through the cell. The accuracy of the ozone mixing ratio is typically ~5% and 

slightly lower at low ozone mixing ratios.  

During flight the CFH, ECC and GPS data streams were transmitted to the ground-

receiving equipment through an interface with a Vaisala RS80 radiosonde; the latter’s 

PTU data stream was also captured.  A Vaisala RS92-SGP was also added to the payload 

for the purposes of inter-comparison of the RS92 twin-humicap relative humidity (RH) 

measurement with that from the CFH.  As reported previously by Vömel et al. [2007c] 

this revealed a dry bias of the RS92-SGP relative humidity due to solar radiation 

approaching 50% at 15 km.    

The full CFH/ECC payloads weighed approximately a kilogram and were flown from 

a 1200-g latex balloon filled with helium.  Each balloon was equipped with a parachute 

so that data could be taken on descent as well as allow for the potential recovery of the 

instruments. Payload preparation and sonde launches were conducted by a team of 
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students from the National University (UNA) of Costa Rica under the leadership of two 

of us (Vömel and Valverde). The UNA team was assisted by IMN technical staff.    

The CFH/ECC launches in the 2005 TCSP campaign were made on 18 consecutive 

days near local noon beginning July 8.  On each of the last five days of the campaign, 

ascents were also made near local midnight. All but three ascents reached altitudes of 27 

km or more, the highest altitude being 32.2 km. Twenty of the 23 flights had good water 

vapor ascent data above 10 km, and on 14 of these we obtained good data through the 

profile temperature minimum or higher. An initial launch for TC4 was made at local 

noon on July 2, 2007, but the intensive phase of the 2007 TC4 campaign began on July 

16 with local noon launches every 3 days through July 31 with an additional 8 flights 

through August 13, four of them taking place at local midnight.  We have also included 

the noon launch on August 30 in our analysis. Table 1 lists the dates, times and maximum 

altitudes of ascent data achieved in each of the flights. 

b. Radiosondes 

The Ticosonde Aura-TCSP radiosonde launch campaign ran from 00 UT June 16 

through 00 UT August 24.  269 of the flights reached the 150 hPa level or higher for an 

average burst altitude of 25.6 km.  The great majority of the ascents were made with the 

Vaisala RS92-SGP radiosonde, although in the final days of the campaign these were 

substituted with Vaisala RS90-AG sondes on 19 occasions and the Vaisala RS80-15G 

sonde on 5 occasions. The Ticosonde/TC4 campaign in 2007 also began at 00 UT on 

June 16 but ran through 15 August 2007, with twice-daily (00 and 12 UT) launches in 

June, and four-times daily (00, 06, 12 and 18 UT) beginning July 1.  Vaisala RS92-SGP 
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sondes were launched throughout. 207 of the 214 flights reached 150 hPa or higher and 

of these the average burst altitude was 30.9 km. 

The ground receiving equipment at the Alajuela station was a Vaisala MW11 

upgraded prior to the 2005 campaign for reception of the RS92 digital signal. Sonde 

preparation, the balloon launches and telemetry were carried out by IMN staff with 

assistance of students from the University of Costa Rica (UCR).  Approximately half the 

time we used 600-g latex balloons filled with helium. For the remaining launches we 

used 500-g balloons filled with hydrogen.  See the Appendix for a discussion of the 

Ticosonde collaborative program. 

3. Average profiles and variability from the water vapor and ozone soundings 

We calculated the mean profiles and variance for temperature, ozone volume mixing 

ratio, observed and saturated water vapor volume mixing ratio, and relative humidity over 

ice (RHi) from the CFH/ECC sonde ascent data. To calculate mean statistics, we 

interpolated each ascent to a 50-m altitude grid and then derived means, standard 

deviations, as well as the maximum and minimum at each grid level in each campaign 

sample.   

a. Temperature structure 

The results for temperature and ozone mixing ratio are shown in Figures 1a (TCSP) 

and 1b (TC4). Table 2 tabulates statistics for variables at the CPT for both campaigns.  In 

terms of the average values, maxima and minima for the variables shown in Table 2, the 

CPTs in the two campaigns differed only slightly, although the variability is somewhat 

lower in TC4. Thus in round numbers, the CPT on average lay at 100 hPa, 375 K 

potential temperature and an altitude of 16.6 km. These values are well within a standard 
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deviation of the global average values for July in the tropical tropopause climatology of 

Seidel et al. [2001].  

The mean CPT water vapor mixing ratio for the two campaigns was close to 5.8 

ppmv and the ozone mixing ratio was  ~150 ppbv. We note that the latter is some 50 

ppbv higher than the mean ozone at 100 hPa in the analysis by Fueglistaler et al. [2009] 

of the SHADOZ data [Thompson et al., 2003].  100 hPa lies close to 375 K in their 

Figure 2a, so we infer that the CPT in our data is embedded in a layer that on average 

contains a significant admixture of stratospheric air. How much this statistical 

characteristic represents irreversible mixing of stratospheric and tropospheric air is not 

clear, however, the individual profiles that we will discuss in Section 4 may offer some 

clues.  

The mean TCSP temperature profile stabilizes at 15.1 km, 130 hPa and 357 K; here 

N2 increases from 1.58 to 3.7 x 10-4 s-2; similar behavior is observed in TC4. However, 

the most striking feature of the temperatures in both campaigns is the sharp increase of 

temperature variability above the 355 K level, shown in both in Figure 1 in terms of 

temperature range (light gray profiles at right) and as variance in Figure 2a. This is 

especially pronounced in TC4 due to the strong inversions observed in the first week of 

August.  Thus while in the middle and upper troposphere below 15 km the full range of 

temperatures in the TCSP sample is nowhere greater than 4.2°C, it increases to over 12°C 

by 16.5 km, close to the mean cold point. Above this level and up to the limit of our data 

above 31 km, the variability remains significantly higher than its values in the free 

troposphere. This will be discussed in more detail in Section 4.  

b. Ozone 
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The mean profiles of ozone differ in the troposphere where there is 25-35% more 

ozone during TC4 than in TCSP and the variance is greater as is shown in Fig. 2b.   

However both mean profiles show inflections at 350 K, and while the TC4 variance does 

not display the abrupt increase at 350 K seen in TCSP, the 350 K level during TC4 lies 

within a steep variance gradient beginning at ~345 K. Thus in both instances increases in 

ozone variance accompany the inflections in the mean profile. Folkins et al. [2002] and 

others have linked the latter to a transition from detrainment of low ozone air by the 

deepest convective clouds to a regime where the ozone balance is between vertical 

advection and chemical production.  The large temperature variance however is a strong 

indication that while this may be a layer of limited convective mixing, it is nonetheless 

extremely dynamic. 

c. Water vapor 

Figure 3 displays the CFH water vapor volume mixing ratio data for each flight series 

and their mean profiles along with profiles of saturation water vapor mixing ratio and 

relative humidity over ice. The saturation mixing ratio is derived from the Vaisala RS80 

pressure and temperature data using the Goff-Gratch formula for the saturation vapor 

pressure over ice [Goff and Gratch, 1946].  For display purposes we have smoothed these 

profiles with an 11-pt boxcar filter.  We also plot the envelope of ±1 standard deviation 

of the water vapor, similarly smoothed.  Finally, we plot the mean cold point in pressure 

and water vapor space.  At right in each panel we have plotted the smoothed mean profile 

of relative humidity over ice within its envelope of ± 1 standard deviation.  

Above 5 km (a level at or very close to the 0°C point in each campaign) the vertical 

structure of the water vapor structure was characterized by an unsaturated layer between 
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5 and 10 km with a mean RHi of 50-75% and frequent instances of very dry air (RHi < 

10%), a nearly saturated upper tropospheric layer with saturation frequently exceeding 

140% or more between 12 and 16 km, and above 16 km a layer encompassing the CPT. 

In the latter, the mean RHi and the incidence of supersaturation decline rapidly.   

Kley et al. [1982] first showed that the minimum water vapor volume mixing ratio in 

this region and season is not located at the tropopause but well into the stratosphere. 

Table 3 presents statistics of the water vapor minima for the two campaigns. It lay 

somewhat lower than TC4 during TCSP at 19.5 km, 62.1 hPa, and 451.6 K potential 

temperature with value of 3.2 ppmv.  The respective values for TC4 were 20.3 km, 54.3 

hPa, 476.7 and 3.0 ppmv.  Standard deviations of at the profile minima (0.47 and 0.56 

ppmv respectively) were similar.  

As can be seen in Figure 2c, in both campaigns the vertical structure of the variability 

of water vapor is generally opposite to that observed in temperature and in ozone, with a 

rapid drop in the upper troposphere above ~335 K (~8 km) and a leveling off between 

350 and 360 K. The large range of values of water vapor tend to obscure fine aspects of 

this vertical structure, so we have also plotted the standard deviations normalized by the 

mean profile. We call this the fractional deviation, and both the TCSP and TC4 profiles 

of this quantity maximize in the upper troposphere, roughly defining the layers of the 

maximum frequency of supersaturation observations. Above 355-360 K the fractional 

deviation profiles have secondary peaks in each campaign, a broad one in TCSP peaking 

just below the mean cold point and a narrower one in TC4 at and just above the mean 

cold point; the latter is co-located with a local maximum in temperature variability.  Thus 

the strong increase of variability of temperature and ozone above 350 K is paralleled by 
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concomitant structure in the variability in the water vapor, and the vertical motions that 

are modulating temperature and ozone are very likely controlling water vapor in this 

region.  Below 350 K quite the opposite is true and water vapor variability is de-coupled 

from lifting and sinking motions due to wave motions and more related to convective 

cloud activity limited to the troposphere below 350 K layer.  

The profile of maximum saturations in Figure 3 (right) suggests an upper limit for 

cold-trapping of air that is entering the stratosphere locally. In both campaigns this level 

is close to the mean cold point (16.8 km in TCSP, 17.1 km in TC4).  In TC4 this 

maximum cold trap altitude is just 450 meters below the highest cold point in the sample 

while in TCSP it is more than a kilometer lower. Figure 4 offers a more detailed look at 

the variability in the neighborhood of this level and the stratospheric content of this air.  

It displays the complete RHi data for the two campaigns plotted against height. To 

distinguish air of stratospheric origin from tropospheric air we color-coded each point 

according to its mixing ratio.  The center in each color bar is the maximum in each 

campaign observed below the 345 K potential temperature level; for TCSP this was 65 

ppbv and in TC4 91 pbbv.  The left-hand extremum in each color bar is the tropospheric 

(i.e. sub-345 K) average value.  

Figure 4 shows that frequent supersaturation above 300 hPa and up to the 350 K level 

was observed in both campaigns. The ozone mixing ratios suggest that these saturated 

layers are tropospheric.  The layer above 350 K is on the other hand heterogeneous with 

stratospheric (deep green) parcels found at all levels and strongly tropospheric (deep red) 

parcels up to 15 km.  Significantly, however, air with tropospheric ozone levels is not 

observed within 200-300 m of the mean cold point level.  
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Above the cold point, the envelope of RHi values in Figure 4 shows how quickly the 

atmosphere dries out even within the altitude range of the observed cold points.  In 

TCSP, except for the cluster of points between 81 and 73 hPa all observed on flight 

SJ009, 50% RHi is not observed above 85 hPa, 17.5 hPa and 400 K and 75%  not above 

17 km.  In TC4 75% RHi is only observed above 17.2 km, and on one flight.  

The results in Figure 4 demonstrate that if  “writing” to the atmospheric water vapor 

tape recorder requires that air parcels both dehydrate and be stratospheric in ozone 

content, then the so-called ‘tape head’ occurs in a layer below the highest level of 

observed saturation. In TCSP this level was 16.8 km and 384 K and in TC4, 17.1 km and 

388 K.  Using the above criterion and our ozone and relative humidity data, tape writing 

could have been occurring as low as 353.7 K and 15.0 km in TCSP and 349 K and 13.6 

km in TC4.  In terms of the mean relative humidity profiles in each campaign, and the 

SHADOZ threshold of 100 ppbv for stratospheric air mentioned earlier, a lower boundary 

could defined at 15.6 km and 361.4 K in TCSP and 15.4 km and 360.9 K in TC4. Using 

this latter definition, we would locate a ‘regional’ tape head in a layer above 360 K and 

below 390 K, not significantly different from the range suggested by Schoeberl et al. 

[2006] and Read et al. [2004] using MLS data for the whole tropics. Given the frequency 

of supersaturation at the mean CPT and its rapid fall above, however, it is more likely 

that in this region, an excellent estimate effective mixing ratio of air entering the 

stratosphere is afforded by the mean water vapor at the CPT; at ~5.8 ppmv it is a good 2 

ppmv lower than the values close to 8 ppmv at the lower boundary of the tape head 

‘layer.’  
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Figure 5 shows six profiles from the TCSP campaign that represent a range of 

behavior in water vapor mixing ratio, ozone mixing ratio, saturation mixing ratio and 

RHi.  As in Figure 3, we have color-coded the water vapor points according to RHi, and 

the campaign mean profiles of both water vapor mixing ratio and ozone mixing ratio are 

plotted to highlight regions of positive and negative anomalies. In our discussion, we will 

refer to dehydration or hydration of the tropopause when a saturated layer at or above the 

mean CPT has a minimum value less or greater than the campaign mean.  

The profiles for July 11 (a) and July 19 (d) stand out as examples of strong 

dehydration at or very close to the CPT, reaching 2.34 ppmv at 16.6 km on July 11 and 

2.68 ppmv at 16.2 km on July 19. Both of these cold and dry tropopauses are 

anomalously low in ozone for those levels, yet under the working definition of 

tropospheric air we adopted for Figure 4, the ozone mixing ratios in the layers are 

marginally stratospheric. The anomalously low ozone extends down to 15.3 km in the 

first case and to nearly12 km in the second; both are supersaturated. The atmosphere 

immediately above the tropopause in each case shows not only a strong inversion in 

saturation mixing ratio (and equivalently temperature) but also an extremely steep 

gradient in ozone mixing ratio, as much as 500 ppbv/km on July 19. This gradient is 

conistent with upward motion and adiabatic cooling below and descent of stratospheric 

air above. 

The sounding from July 13 (Figure 5b) in (b) shows supersaturation both in the upper 

troposphere between 12 km and 15 km and in the layer near the CPT. The upper layer 

contains stratospheric levels of ozone that are greater than the campaign mean, and the 
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upper boundary of the layer lies above 380 K.  It is possible that this combination of the 

supersaturation, stratospheric ozone and high potential temperature was produced by 

penetrating convection, but wave motions could have produced this as well. Soundings c 

and e (July 16 and 23 respectively) are subsaturated except for shallow layers near the 

tropopause.  In the July 16 case, subsaturation in the upper troposphere from 13-15 km is 

accompanied by relatively elevated ozone levels. While the subsaturation is too small to 

indicate descent from the stratosphere, it does indicate subsidence.  Sounding f (July 25) 

like b, c, and e, shows no significant tropopause dehydration, and an upper troposphere 

with relatively high ozone.  Futhermore, stratospheric levels of ozone appear as low as 

14.5 km; below this subsaturated layer the air is strongly supersaturated down to nearly 

12 km with ozone discontinuities both at the top and bottom of the latter layer. 

5.  Temperature variability and coherent fluctuations in the upper troposphere and 

the lower stratosphere  

We have shown in Section 3 that in both campaigns the variability of temperature and 

ozone increases substantially above the 350 K potential temperature level, dramatically 

so in the case of TCSP.  Here we show that the dominant modes of temperature 

variability above this level during both TCSP and TC4 lie in a spectrum of equatorial 

waves that are most likely excited by the deep convection in the region. Pfister et al. [this 

issue] found that during the summer of 2007 when TC4 took place, these waves included 

modes on time scales of a week or more as well as higher frequency inertio-gravity 

waves.  Here we focus on the wave variability observed during TCSP, during which the 

longer period modes were more dominant than in TC4. 
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Upward propagation of equatorial waves is sensitive to wind shear. Figure 6 shows 

the profiles of the radiosonde mean zonal and meridional wind derived from the four-

times daily radiosonde launches at Alajuela for the 61days between 00 UT June 16 

through 18 UT August 15, 2005; the mean profiles are bracketed by envelopes of ±1 

standard deviation.  The profiles were obtained by interpolating the 2-sec data from each 

sounding to a 10-m grid and then calculating mean profiles on this grid.  

The wind profiles in Figure 6 can be compared with the very similar features of the 

TC4 wind profiles in Pfister et al. [op. cit.], viz., east-southeasterly winds above the 

boundary layer that become easterly and then east-northeasterly, above 9 km in this case.  

The winds in 2005 also show increased variability in both components in the upper 

troposphere and mean northeasterly flow in the uppermost troposphere.  The primary 

difference between 2005 and 2007 is that this upper tropospheric flow is stronger and 

extends through the mean cold point level.  In the stratosphere there is a similarly strong 

easterly shear that culminates in an easterly wind maximum of 42 ms-1 at 30 km. 

Figure 7 displays time-height cross-sections of temporal anomalies of the radiosonde 

temperature (T), zonal wind (u) and meridional wind (v) for the same period as in Figure 

6.  Before plotting we took each grid-level time series and subtracted the 61-day mean 

and removed any linear trend. In addition the data in the figures was smoothed in the 

vertical using a 101-pt boxcar smoother. For reference purposes we also plot the 

campaign mean heights of CPT and the 350 and 355 K potential temperature levels, and 

in addition along the bottom edge of each plot arrows at the times of the 23 ascents of the 

CFH/ozonesonde payload between July 8 and 25. 
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Figure 7a is the time-height cross-section of the T anomalies. While there is very little 

coherent variation below 350 K, above this level and up to at least 21 km, there is an 

unmistakable pattern of downward propagating anomalies at periods of 4-16 days and 

vertical wavelengths of 4-5 km.  In the Figure we drawn dashed and dotted phase lines to 

highlight the descending cold and warm anomalies.  The largest temperature anomalies 

occur between 355 K and the level of the mean CPT, though anomaly amplitudes of 4 K 

occur on several occasions near the 24-km level. 

Figures 7b and c show time-height cross-sections of u and v anomalies respectively.  

Both show very different behavior in the troposphere below 355 K where anomalies are 

vertically aligned; in the lower troposphere easterly wave pulses of the meridional wind 

are particularly regular. In the UT/LS the meridional wind appears to be in phase with the 

temperature anomalies, i.e., cold anomalies are accompanied by northerly wind 

anomalies while the zonal wind anomalies appear to be in quadrature. 

As these waves impact the temperature at the tropopause, they have an effect on the 

saturation mixing ratio of water vapor.  Figure 8 shows the time series of the saturation 

mixing ratio at the CPT during the 2005 campaign. (Pfister et al. [op. cit.] present the 

corresponding time series for the summer of 2007.)  The time series exhibits both high-

frequency variability and peak-to-peak variations of up to 4 ppmv at time scales of  ~5 

days mixed with periods twice that; these become prominent after an extended low period 

in the first 10 days of the record (mid-to late June).  We have also plotted in Figure 8 the 

shorter record of water vapor mixing ratios from the gridded CFH sounding data (July 8-

25).  As we have already shown in the previous section, the cold point during TCSP was 

more often than not supersaturated.  Thus it is not surprising to note that the water vapor 
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measurements in almost all cases exceed the saturation mixing ratio. Nevertheless the 

sense of the synoptic scale variations in the saturation mixing ratio time series is 

preserved in the CFH data; in particular there are saturation mixing ratio minima near 

days 192 and 201 that correspond to the strongly dehydrated profiles on July 11 and 19. 

The results of spectral analyses of T, u and v are shown in Figure 9.  They support the 

inferences from Figures 6 and 8. First, centered at 16 km, i.e., somewhat below the mean 

level of the CPT, the temperature shows a peak at periods centered at 4 days and a 

broader peak centered between 8 and 16 days.  The 4-day feature extends upward through 

the CPT to just above 18 km as does power at periods longer than 16 days.  Above 25 km 

there is considerable power at a wide range of time scales longer than the inertial period 

(2.88 days at 10° latitude), but relatively little power between 20 and 25 km except for 

weak feature in the 20-22 km region at ~5 days.  Neither the zonal or the meridional wind 

show as much spectral power at the tropopause and above relative to their variability in 

the troposphere, despite the clear features appearing in the time-height cross-sections in 

Figure 7. However, the zonal wind power is dominated in the upper troposphere by 

roughly the same periods as the temperature shows at the tropopause and the lower 

stratosphere; and the meridional wind shows a particularly strong feature at 4 days shifted 

only slightly downward in altitude relative to the temperature. Unlike the other two 

variables, the meridional wind shows some power in the inertial range in the upper 

troposphere, as well as the strong variability in the low-to-mid troposphere due to easterly 

waves.  

Returning to the inter-relationships between the components, the in-phase relationship 

between temperature and meridional wind in Figure 7 is supported by the results of cross-

 19



Selkirk et al. Tropical UTLS water vapor and ozone 9/17/09 

spectral analysis (not shown) which show peaks near 16 km in the T-v co-spectrum at 

periods of 5 and ~10 days. Likewise the quadrature relationship between temperature and 

zonal wind is reflected by peaks in the T-u quadrature spectrum at 5 days and 17 km and 

upward to ~20 km and also between 8 and 16 days above 15 km, again peaking at the 16 

km level.  This pattern of coherence between these components is characteristic of mixed 

Rossby-gravity waves [Dunkerton and Baldwin, 1995] which propagate westward and 

will rapidly decay with height in the presence of easterly shear.  Such is the case with the 

spectral power in T, u and v in both 2005 and 2007, each of these being in an easterly 

phase of the Quasi-Biennial Oscillation [Baldwin et al., 2001].   
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The energy source for the waves is very likely regional deep convection. First, there 

is the sharp transition at 15 km from vertical coherence in the wind anomalies in the 

troposphere to downward phase propagation in all components above. This is consistent 

with energy propagating upward and away from the detrainment level for regional 

convective systems.  Secondly, the coherent wave structure in the UT/LS, while a feature 

of the summer convective periods in Costa Rica in 2005 and 2007 reported here, was not 

repeated in the winter of 2006 when we conducted an extended radiosonde campaign at 

Alajuela in support of the NASA CR-AVE mission. During the winter dry season, deep 

convection is centered well south of the equator in tropical American longitudes, whereas 

during summer convection is maximized near the latitude of Costa Rica.  
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The profiles of both water vapor and ozone constituents are consistent with the 

vertical structure of each of these trace species in the tropics obtained previously with in 

situ water vapor observations by Vömel et al. [2002] and ozonesonde observations from 

SHADOZ [Thompson et al. 2003], viz., the TCSP and TC4 mean profiles show an 

inflection in ozone at 350 K potential temperature and a mean CPT close to 16.6 km and 

375 K potential temperature with water vapor volume mixing ratios slightly less than 6 

ppmv.  Stratospheric minima in the mean profiles of water vapor from TCSP and TC4 

were within 0.1 ppmv of 3.1 ppmv. These lay above 19.5 km and 450 K potential 

temperature, with the latter campaign’s minimum 0.8 km and 25 K higher. 

Similar to the observations reported in Vömel et al. [2002] as well, ice supersaturation 

was observed on nearly all of the TCSP ascents between 10 km and the CPT, typically in 

layers several kilometers deep, with embedded regions of supersaturation > 40% 

observed on several ascents; supersaturated layers were observed in the upper 

troposphere during TC4 as well, though not as frequently. In both campaigns the 

saturated layers included a subgroup with significant stratospheric fractions of ozone, and 

the latter were observed below the 355 K level in both campaigns.  

The close spacing of water vapor and ozone profiles we obtained in TCSP, and again 

in TC4, together with the two months-plus records of high-frequency radiosondes enable 

us to unequivocally link the structure and variability in the trace constituents to equatorial 

waves.  The profiles in the TCSP and TC4 campaigns each display similar vertical 

structures in temperature variability, with a marked increase in the variability of 

temperature at 355 K (14.9 and 14.5 km respectively). This increased variability reflects 

 21



Selkirk et al. Tropical UTLS water vapor and ozone 9/17/09 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

adiabatic temperature changes associated with a spectrum of equatorial wave motions, 

including most significantly westward-moving waves with time periods of 4 days and 

longer.  Though not shown explicitly here, ozone anomalies above 15 km were likely also 

to have been induced by the vertical motion in the waves.  

Variability in temperature and ozone mixing ratio and the correlation of peaks in 

temperature and water vapor mixing ratio suggest that the tropical tropopause layer in the 

region is distinguished by two characteristics: significant in-mixing of stratospheric air 

and strong episodes of cooling resulting in dehydration. Temperature and wind anomalies 

from 4-times daily radiosondes launched during both campaigns demonstrate that these 

cold episodes are caused by coherent westward-moving wave variations with phase 

propagation downward from the lower stratosphere to the ~15 km level.  These waves 

produce temperature fluctuations on the order of ±6 K in the stratosphere and are the 

driver of water vapor variations and dehydration near the tropopause as well as variations 

of ozone due to vertical displacements across the strong mean gradient. In contrast to this 

wave-driven regime, below the 15 km level – which is approximately the neutral 

buoyancy level for deep convection – the waves rapidly weaken with height, and water 

vapor variations become decoupled from temperature. In this region, the observed 

supersaturations that are observed are most likely closely associated with detrainment of 

deep convective clouds and anvils. Similarly, the weakening of wave displacements in 

this convective regime below 15 km yields a strong decrease in the relative variability of 

ozone, and vertical mixing is the dominant process.  

Water vapor and ozone measurements were made in TCSP during two high-

amplitude wave events that dehydrated the air to under 3 ppmv at the CPT. The second 
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event, profiled in the sounding from July 19, is an example of tropopause-level 

dehydration appearing as the end stage of a process of slow ascent and cooling following 

deep convective detrainment several days upstream.  In TC4 an unusual high amplitude 

wave event in the first week of August not only pushed cold point water vapor down to 3 

ppmv and below, but the accompanying strong subsidence below the cold point produced 

a 3-km layer of ozone of constant 100 ppbv mixing ratio down to 14 km. 

While the data presented here are for two relatively short campaigns, the consistency 

of the gross characteristics of the temperature, water vapor and ozone between the two 

argues for the robustness of our results.  One important difference between the campaigns 

is the lower mean RHi in TC4, but this is consistent with the weaker convection overall 

in TC4 compared to TCSP (see Figures 5-7 in Pfister et al. [op. cit]). It may also be 

consistent with the higher mean levels of ozone in the troposphere and its variability in 

TC4 . 

The individual profiles show that there was dehydration of stratospheric air as low as 

349 K and as high as 388 K (Figure 4), although these should be considered the lower- 

and uppermost levels where ‘writing’ to the atmospheric tape recorder occurred, and we 

have argued that in this region and season the effective mixing ratio is being set very 

close to the mean cold point tropopause at 375 K.  However, we would also argue that the 

location of the water vapor tape head close to the mean CPT is not necessarily an 

indication that dehydration is occurring in layers detrained close to that level.  On the 

contrary, the cooling and lifting produced by the equatorial waves above 15 km is 

superposed upon an upper troposphere which is in the mean ascending and dehydrating, 

and the greatest potential for dehydration will thus occur where large temperature 
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excursions in the waves combine with the minimum value of the background temperature 

profile.  
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The Ticosonde/Aura-TCSP and Ticosonde/TC4 radiosonde launch campaigns were 

the second and fourth in a series of collaborations between investigators from NASA and 

Costa Rica to make intensive observations of atmospheric variability during the summer 

rainy season over Central America; the first campaign, Ticosonde/NAME took place in 

the summer of 2004; a shorter (one-month) sonde campaign was conducted in July 2006 

namedTicosonde/Veranillo.  All four of these campaigns were focused on characterizing 

(a) the variability of temperature and winds in the UT/LS from inertial time scales up to 

the synoptic and (b) regional weather phenomena such as the veranillo or midsummer 

drought  [Magaña, et al., 1999] and the Caribbean low-level jet [Amador, 1998; Amador 

et al., 2006; Amador, 2008; Muñoz, et al., 2008], as well as temporal fluctuations in the 

tropical tropopause layer or TTL. Soundings from each campaign directly supported 

forecasting, flight planning and analysis for the NASA TCSP and TC4 flight campaigns 

and with the CFH/ECC have also contributed to validation of measurements on board the 

NASA EOS Aura satellite and other platforms [e.g., Vömel et al., 2007b].  In addition to 

these four summer season campaigns, there was a winter campaign that took place in 

early 2006 in conjunction with NAA Costa Rica Aura Validation Experiment (CR-AVE).   
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Figure 1: TCSP (left) and TC4 (right) mean profiles of temperature (heavy solid) and 

ozone mixing ratio (heavy dotted) calculated on a grid with 50-m resolution, each 

bracketed by campaign minima and maxima at each grid level. Light dotted lines at right 

are profiles of the full range of temperatures in each campaign. Inverted triangles mark 

the mean altitude and temperature of the CPT. 

Figure 2: Variance of (a) temperature and (b) ozone mixing ratio and (c) standard and 

fractional deviations (see text) of CFH water vapor mixing ratio plotted against potential 

temperature. Horizontal lines are mean altitudes of the CPT from each campaign.  

Figure 3:  At left in each panel: CFH water vapor volume mixing ratio data color-coded 

by relative humidity with respect to ice (RHi), mean profile (heavy dark line) and 

envelope of ± 1 standard deviation (light lines), and mean saturation mixing ratio (dotted 

red line). The mean cold point is shown by the inverted triangle, color coded by RHi. At 

right, mean profile of RHi (blue/white) and envelope of RHi maxima and minima. All 

profiles with the exception of RHi maxima and minima are smoothed with an 11-pt 

boxcar filter. 

Figure 4: RHi observations from (a) TCSP and (b) TC4, color-coded by ozone mixing 

ratio. The middle of the color scale (white) is set to the highest tropospheric (θ ≤ 345 K) 

ozone observed in each campaign and full red set to the average tropospheric ozone 

mixing ratio. Inverted triangles centered at the mean cold point tropopause, horizontal 

(vertical) bars extend to maximum and minimum values of RHi (pressure) during each 

campaign. 

Figure 5: Selected ascents from the 2005 TCSP CFH/ECC campaign. Water vapor 

mixing ratio, heavy dots color-coded by relative humidity with respect to ice; mean water 

vapor mixing ratio, dotted black line; ozone mixing ratio, red line; mean ozone mixing 

ratio, smooth red line; and saturation mixing ratio of water, continuous black line. 

Soundings on (a) July 11, (b) July 13, (c) July 16, (d) July 19, (e) July 23 and (f) July 25. 
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Figure 6: Mean profiles of zonal (blue) and meridional (red) winds in envelopes of ± 1 

standard deviation. Data from four-times-daily radiosondes at Alajuela over the two-

month period 16 June through 15 August, 2005. 

Figure 7: Time-height cross-section of anomalies at Alajuela, 16 June -15 August 2005, 

of (a) temperature, (b) zonal wind and (c) meridional wind. Heavy dashed lines in all 

three panels are phase lines of negative temperature anomalies, dotted, positive 

anomalies.  Horizontal dotted lines at TCSP campaign (July 8-25) mean altitudes of the 

350 and 355 K surface, and heavier dotted line at the mean altitude of the CPT. 

Figure 8: Time series of saturation mixing ratio at the cold point from radiosonde 

measurements at Alajuela, 16 June through 15 August 2005 – light dotted line, spline-

interpolated data, heavy line, binomially-smoothed (N=51).  Large dots are cold point 

water vapor volume mixing ratio from the CFH. 

Figure 9:  Frequency-height cross-sections of power spectral density from periodogram 

analysis for anomalies at Alajuela, 16 June -15 August 2005, of (a) temperature, (b) zonal 

wind and (c) meridional wind. Equivalent periods in days are shown across the top; fi 

marks the inertial period at 10°N.
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Max altitude (km) Max altitude (km) Flight Day Time 
(UT) Ozone WV 

 Flight Day Time 
(UT) Ozone WV 

Ticosonde/Aura-TCSP 2005 SJ022 7/24 17:23 21.0 21.0 
SJ001 7/8 18:08 30.2 11.0 SJ023 7/25 5:34 30.8 – 
SJ002 7/9 17:54 30.3 12.6 SJ024 7/25 17:27 28.7 21.8 
SJ003 7/10 17:58 31.7 8.5 Ticosonde/TC42007 
SJ004 7/11 18:14 31.1 21.0 SJ132 7/2 17:48 27.3 26.4 
SJ005 7/12 18:10 30.5 21.6 SJ135 7/16 18:25 30.3 21.4 
SJ006 7/13 18:06 31.6 24.4 SJ136 7/19 17:57 32.1 21.0 
SJ007 7/14 18:15 31.4 12.6 SJ137 7/22 17:48 30.4 21.3 
SJ008 7/15 17:54 32.2 17.8 SJ138 7/25 17:05 32.0 20.1 
SJ009 7/16 18:12 30.7 24.1 SJ139 7/28 17:36 14.0 14.0 
SJ010 7/17 17:40 30.3 20.7 SJ140 7/31 17:20 31.7 31.7 
SJ011 7/18 17:43 30.1 12.6 SJ141 8/2 05:39 30.1 17.0 
SJ012 7/19 17:34 30.1 25.0 SJ142 8/3 15:42 31.2 27.7 
SJ013 7/20 18:46 27.3 18.5 SJ143 8/4 05:20 28.8 18.1 
SJ014 7/21 5:58 19.1 12.3 SJ144 8/5 05:32 30.0 17.1 
SJ015 7/21 17:39 29.4 4.9 SJ145 8/7 05:31 28.9 17.3 
SJ016 7/22 5:28 30.5 23.5 SJ146 8/8 17:36 30.7 23.9 
SJ017 7/22 17:33 30.2 19.3 SJ147 8/09 05:29 29.3 23.0 
SJ018 7/23 5:28 18.6 14.8 SJ148 8/13 14:50 27.4 24.7 
SJ020 7/23 18:47 31.8 27.5 SJ149 8/30 17:07 32.3 21.9 
SJ021 7/24 5:34 30.6 25.1 

 

     

Table 1: Flight statistics for CFH/ECC launches during the July 2005 Ticosonde/Aura-
TCSP campaign  and July-August 2007 Ticosonde/TC4 campaign. Flights in bold are 
nighttime ascents.
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 Instrument Units Average Standard 

Deviation 
Minimum 
(or lowest) 

Maximum 
(or highest) 

n 

TCSP  8-25 Jul 2005        

Altitude RS80 km 16.64 0.65 15.80 18.26 23 
Pressure RS80 hPa 99.9 10.6 114.6 75.2 23 

Temperature RS80 °C -79.2 2.48 -85.0 -76.2 23 
Potential temperature RS80 K 375.3 13.6 360.1 403.9 23 
Ozone mixing ratio ECC ppmv 0.158 0.064 0.056 0.288 22 

Water vapor mixing ratio CFH ppmv 5.73 1.72 2.62 8.23 13 
Saturation mixing ratio RS80 ppmv 6.76 2.61 2.29 11.3 23 

RHice CFH/RS80 % 88.4 28.4 47.3 134.6 13 

TC4  2 Jul – 30 Aug 2007        

Altitude RS80 km 16.64 0.56 15.78 17.55 15 
Pressure RS80 hPa 99.6 9.74 114.8 85.0 15 

Temperature RS80 °C -78.9 1.69 -83.0 -77.0 15 
Potential temperature RS80 K 376.0 10.6 360.5 395.3 15 
Ozone mixing ratio CFH ppmv 0.145 0.0366 0.097 0.23 15 

Water vapor mixing ratio ECC ppmv 5.79 1.28 3.87 8.08 15 
Saturation mixing ratio RS80 ppmv 6.79 1.77 3.44 9.39 23 

RHice CFH/RS80 % 89.0 21.9 53.9 119.3 15 

Table 2: CPT statistics for the TCSP and TC4 water vapor/ozonesonde flight series. 
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 Instrument Units Average Standard 

Deviation 
Minimum 
(or lowest) 

Maximum 
(or highest) 

N 

TCSP – Jul 2005        
Altitude RS80 km 19.5 0.72 18.3 20.7 12 
Pressure RS80 hPa 62.1 7.24 74.5 50.0 12 

Temperature RS80 °C -69.5 2.63 -72.6 -64.5 12 
Potential temperature RS80 K 451.6 19.7 423.3 486.5 12 

Water vapor CFH ppmv 3.21 0.47 2.7 4.4 12 
Ozone ECC ppmv 0.79 0.27 0.464 1.36 12 

TC4 – Jul/Aug 2007        
Altitude RS80 km 20.3 1.12 19.0 23.0 11 
Pressure RS80 hPa 54.3 9.45 65.9 34.7 11 

Temperature RS80 °C -67.2 3.22 -71.9 -61.4 11 
Potential temperature RS80 K 476.7 33.4 443.2 553.2 11 

Water vapor ECC ppmv 3.02 0.56 1.84 3.57 11 
Ozone CFH ppmv 1.27 0.772 0.66 3.25 11 

Table 3: Profile minimum water vapor statistics for the TCSP and TC4 water vapor and 
ozonesonde campaigns. 

 

 



Figure 1: TCSP (left) and TC4 (right) mean profiles of temperature (heavy solid) and ozone mixing ratio (heavy dotted) calculated on a 

grid with 50-m resolution, each bracketed by the minima and maxima observed at each grid level in the campaign.  Light dotted lines at

right are profiles of the full range of temperatures in the each campaign. Inverted triangles mark the mean altitude and temperature of the 

cold point tropopause.
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Figure 2: Variance of (a) temperature and (b) ozone mixing ratio and (c) standard and fractional deviations (see text) of CFH water vapor 

mixing ratio plotted against potential temperature. Horizontal lines are mean altitudes of the cold point tropopause from each campaign. 
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Figure 3:  At left in each panel: CFH water vapor volume mixing ratio data color-coded by RHi, and mean profile (heavy dark line) and envelope 

of ± 1 standard deviation envelope (light lines), mean saturation mixing ratio (dotted red line), mean cold point  inverted triangle, color coded by 

RHi. At right, mean profile of RHi (blue/white) and envelope of RHi maxima and minima. All profiles with the exception of RHi maxima and 

minima smoothed with an 11-pt boxcar filter.
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Figure 4: Observations of relative  humidity with respect to ice (RHi) from (a) TCSP and (b) TC4, color-coded by ozone mixing ratio. The middle 

of the color scale (white) is set to the highest tropospheric (θ ≤ 345 K) ozone observed in each campaign and full red set to the average tropospheric 

ozone mixing ratio. Inverted triangles centered at the mean cold point tropopause, horizontal (vertical) bars extend to maximum and minimum 

values of RHi (pressure) during each campaign.
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Figure 5: Selected ascents from the 2005 TCSP CFH/ECC campaign. Water vapor mixing ratio, heavy dots color-coded by 

relative humidity with respect to ice; mean water vapor mixing ratio, dotted black line; ozone mixing ratio, red line; mean 

ozone mixing ratio, smooth red line; and saturation mixing ratio of water, continuous black line. Soundings on (a) July 11, 

(b) July 13, (c) July 16, (d) July 19, (e) July 23 and (f) July 25.
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Figure 6: Mean profiles of zonal (blue) and meridional (red) winds in envelopes of ± 1 

standard deviation. Data from four-times-daily radiosondes at Alajuela over the two-month

period 16 June through 15 August, 2005.



Figure 7: Time-height cross-section of anomalies at Alajuela, 16 June -15 August 2005, of (a) temperature, 

(b) zonal wind and (c) meridional wind. Heavy dashed lines in all three panels are phase lines of negative 

temperature anomalies, dotted, positive anomalies.  Horizontal dotted lines at TCSP campaign (July 8-25) 

mean altitudes of the 350 and 355 K surface, and heavier dotted line at the mean altitude of the cold point 

tropopause.
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Figure 8: Time series of saturation mixing ratio at the cold point from radiosonde measurements at Alajuela, 

16 June through 15 August 2005 – light dotted line, spline-interpolated data, heavy line, binomially-smoothed 

(N=51).  Large dots are cold point water vapor volume mixing ratio from the CFH.



Figure 9:  Frequency-height cross-sections of power spectral density from periodogram analysis for anomalies 

at Alajuela, 16 June -15 August 2005, of (a) temperature, (b) zonal wind and (c) meridional wind. Equivalent 

periods in days are shown across the top; fi marks the inertial period at 10°N. 
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