Directly Measured Heating Rates of a Tropical Subvisible Cirrus Cloud

Anthony Bucholtz¹*, Dennis L. Hlavka², Matthew J. McGill³, K. Sebastian Schmidt⁴, Peter Pilewskie⁴, Sean M. Davis⁵, Elizabeth A. Reid¹, and Annette L. Walker¹

¹Naval Research Laboratory, Monterey, CA
²Science Systems and Applications, NASA Goddard Space Flight Center, Greenbelt, MD
³NASA Goddard Space Flight Center, Greenbelt, MD
⁴University of Colorado, Boulder, CO
⁵NOAA Earth System Research Laboratory, Boulder, CO

*Corresponding Author: Anthony Bucholtz, Marine Meteorology Division, Naval Research Laboratory, 7 Grace Hopper Ave., Stop 2, Monterey, CA 93943-5502 Tel: 831-656-5024, Fax: 831-656-4769, Email: anthony.bucholtz@nrlmry.navy.mil
Abstract

We present the first direct measurements of the infrared and solar heating rates of a tropical subvisible cirrus (SVC) cloud sampled off the east coast of Nicaragua on 25 July 2007 by the NASA ER-2 aircraft during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). On this day a persistent thin cirrus layer, with mostly clear skies underneath, was detected in real-time by the cloud lidar on the ER-2 and the aircraft was directed to profile down through the SVC. Measurements of the net broadband infrared and solar irradiance above, below, and through the SVC are used to determine the infrared and solar heating rates of the cloud. The lidar measurements show that the variable SVC layer was located between ~13-15 km. Its midvisible optical depth varied from 0.01-0.1, but was mostly in the 0.02-0.05 range, and its depolarization ratio was approximately 0.4, indicative of ice clouds. From the divergence of the measured net irradiances the infrared heating rate of the SVC was determined to be ~2.50-3.24 K day$^{-1}$ and the solar heating rate was found to be negligible. These values are consistent with previous indirect observations of other SVC and with model-generated heating rates of SVC with similar optical depths. This study illustrates the utility and potential of the profiling sampling-strategy employed here. A more fully instrumented high altitude aircraft that also included in situ cloud and aerosol probes would provide a comprehensive dataset for characterizing both the radiative and microphysical properties of these ubiquitous tropical clouds.
Subvisible cirrus (SVC) are high altitude, optically thin ice clouds that are very common in the tropics. They are called subvisible because they are difficult to see visually from below or above and only become apparent when viewed edge-on, as when looking towards the horizon from an airplane. As a general rule of thumb it has been estimated that a mid-visible cloud optical depth of approximately 0.03 is the minimum threshold for visual observation of these clouds (Sassen and Cho, 1992).

The extent and prevalence of subvisible cirrus was first detected by ground based lidar measurements in the western tropical Pacific at Kwajalein Atoll in the 1970s (Uthe and Russel, 1976). Subsequent satellite (Prabhakara et al., 1993; Wang et al., 1996; Winker and Trepte, 1998; Dessler et al., 2006; Mace et al., 2009), aircraft lidar (McFarquhar et al., 2000; Pfister et al., 2001) and ground-based lidar (Comstock et al., 2002) studies have confirmed the prevalence of SVC in the tropics and found that they are present approximately 30-50% of the time depending on location. These studies have also found that the SVC are located near the tropopause at altitudes of 14-17 km and are typically less than a kilometer thick. They can be variable in space and time or they can extend for hundreds of kilometers across the sky and last for several days. SVC have been detected as a single isolated layer or as a layer above deep convection.

Since their discovery over thirty years ago there have only been a few direct aircraft measurements of SVC, and these have been limited to measurements of the microphysical properties of the clouds. Heymsfield (1986) performed the first in situ measurements of SVC acquiring data on the habits and sizes of the ice crystals in the cloud from a WB-57 aircraft over Kwajalein in 1973. Since then only a few in situ
aircraft microphysical measurement studies have occurred (Booker and Stickel, 1982; Peter et al., 2003; Lawson et al., 2007). Recently, Davis et al. (2009, this issue) reported on aircraft in situ and lidar measurements of the microphysical properties of subvisible cirrus made from the NASA WB-57 aircraft during the TC4 field study near Costa Rica. This lack of measurements has left many uncertainties about the radiative and microphysical properties and effects of subvisible cirrus, and about their formation and persistence mechanisms. However, because of the prevalence of SVC in the tropics, several studies have suggested that these clouds may play an important role in the radiative balance of the tropical upper troposphere and in stratosphere-troposphere exchange by absorbing outgoing thermal infrared (IR) radiation and causing a subsequent modification of the thermodynamic structure of the upper troposphere (Gage et al., 1991; Jensen et al., 1996b; Rosenfield et al., 1998; Corti et al., 2006). This heating of the cloud layer may also play a role in the persistence of the SVC by either warming the cloud and causing it to dissipate in a matter of hours or by inducing a lifting of the cloud and causing it to persist for days (Jensen et al. 1996a). Two recent modeling studies have suggested that the IR heating of the SVC thermally forces a mesoscale circulation that enables the cloud to maintain itself for up to 2 days (Durran et al., 2009; Dinh et al., 2009).

To address these issues accurate estimates of the radiative heating rates of the SVC are required. Several studies have estimated SVC heating rates of a few K per day (Jensen et al., 1996a; McFarquhar et al., 2000; Comstock et al., 2002). In general, these studies estimated the heating rates with a radiative transfer model using as input the microphysical data from the limited set of in situ aircraft measurements, and optical depth.
and cloud boundary information from lidar measurements. Until now there has not been a direct measurement of the heating rates of subvisible cirrus to validate these estimates. Here we present the first direct measurements of the infrared and solar heating rates of a tropical subvisible cirrus cloud sampled off the east coast of Nicaragua on 25 July 2007 by the NASA ER-2 aircraft during TC4. For almost the entire flight on this day the downlooking cloud lidar on the ER-2 detected a persistent subvisible cirrus layer near the bottom of the tropopause, with mostly clear skies underneath. Fortunately, the ER-2 had a satellite downlink capability during TC4 and the cloud lidar data showing the presence, altitude and thickness of the SVC below the aircraft was available to view in real time on the ground enabling mission scientists to vector the ER-2 pilot to the proper altitudes and coordinates to profile through this cirrus layer. Measurements from this flight of the net broadband infrared and solar irradiance above, below, and through the SVC are used to directly determine the infrared and solar heating rates of the cloud. In section 2 we describe the instruments on the ER-2 that were used in this study, specifically, the Broadband IR Radiometers (BBIR), the Solar Spectral Flux Radiometer (SSFR), and the Cloud Physics Lidar (CPL). In section 3 we present the meteorological conditions on this day and the morphological and optical properties of the SVC measured by the lidar. In section 4 we illustrate the aircraft profiling strategy used to sample the SVC layer. In section 5 we present the results of our measurements of the IR and solar heating rates of the subvisible cirrus. In section 6 we compare our measurements to model generated values and in section 7 we summarize our results and make suggestions for future aircraft measurements of SVC.
2. Instrument Description

2.1. Broadband Infrared Radiometers (BBIR)

The BBIRs are Kipp & Zonen CG-4 pyrgeometers (Kipp & Zonen, 2003) that have been modified to make them better suited for use on an aircraft (Bucholtz and Jonsson, 2009). They have a hemispheric field-of-view and a wavelength bandpass of 4.5-42 μm. For TC4 identical BBIRs were mounted on the top and bottom of the ER-2 fuselage to measure the downwelling and upwelling IR irradiance, respectively.

The modifications made to these commercially available radiometers include a new back housing that retains the front end optics and electronics of the original instrument but allows an amplifier to be mounted directly below the sensor. The signal is then amplified from the milli-Volt range to the 0-10 Volt range and the instrument is run in current loop mode, a well established technique for minimizing the effects of noise in long signal cables. This technique is especially effective in the electronically noisy environment of a research aircraft. The new housing has the cable connector on the bottom of the instrument for easier mounting onto the aircraft. It is hermetically sealed and has a pop-up pressure relief valve that allows evacuation of air from inside the instrument to prevent damage or data loss due to condensation or freezing inside the instrument dome.

The Kipp & Zonen pyrgeometers have features that make them attractive for aircraft use even before modification. The off-the-shelf CG-4s have a silicon dome that acts as a solar blind filter and has an ellipse shape with a full 180° field-of-view with a good cosine response. Due to the construction methods used, any solar radiation absorbed by the window is effectively conducted away, allowing accurate measurements in full
sunlight and eliminating the need for any shading disk. In addition, excellent dome to body thermal coupling eliminates the need for a dome thermistor, and the calculation of the dome to body temperature offset that is required by other pyrgeometers (Kipp & Zonen, 2003; Philipona et al., 1995).

The BBIRs were calibrated in-house both pre- and post-mission. The calibration entailed having the BBIRs view a blackbody source whose temperature was varied. The calibration constants were then derived from a fit of the known blackbody irradiance at each temperature versus the raw BBIR signal (in Volts). The pre- and post-mission calibrations agreed to within 5% for the downlooking radiometer and to within 2% for the uplooking radiometer, showing the stability of the BBIRs over the course of TC4.

As an additional test, side-by-side comparisons were done of the up- and down-looking BBIRs used on the ER-2. This test simply involved mounting the two BBIRs outside right next to each other and comparing the IR irradiances measured by each under varying sky conditions. This comparison is especially important for this study because in the determination of SVC heating rates we use the net flux, or difference between the up- and down-looking radiometer measurements. The relative error between the two instruments is therefore more important than the absolute error of each. The side-by-side comparison test showed that the two BBIRs agreed to within +/- 1.0%. Based on these calibrations and tests the accuracy of the BBIRs is estimated to be 2-5% and the precision is estimated to be 1-3%.

2.2 Solar Spectral Flux Radiometer (SSFR)
The SSFR (Pilewskie et al., 2003) consists of two spectroradiometers connected via fiber optic cables to optical inlets containing a miniature integrating sphere for light collection. An optical inlet was mounted on the top (zenith viewing) and bottom (nadir viewing) of the NASA ER-2 fuselage for TC4 to measure the downwelling and upwelling spectrally resolved solar irradiance, respectively. The wavelength range of the instrument, 350 to 2150 nm, encompasses 90% of incident solar radiation. This wavelength range is covered by using two spectrometers per optical inlet: a grating spectrometer with a Silicon Charged Coupled Device (CCD) array for near-ultraviolet, visible and very near-infrared (350-1000 nm, 8 nm spectral resolution) and a spectrometer with an Indium-Gallium-Arsenide linear array detector for the shortwave infrared (900-2200 nm, 12 nm resolution) wavelength range. The SSFR records a nadir and zenith spectrum every second.

The spectrometers are calibrated in the laboratory with a National Institute of Standards and Technology (NIST)-traceable blackbody (tungsten-halogen 1000W bulb). The radiometric stability of the SSFR is carefully tracked during the course of a field experiment with a portable field calibration unit with a highly stable power source and 200W lamps. The calibration held to the 1 to 2% level over the course of the TC4 field mission. The radiometric calibration was adjusted for minor fluctuations measured by the field calibration from flight to flight. The estimated uncertainties in the absolute calibration of the instrument are 5%. The data were corrected for the angular response of the light collectors and for changes in downward irradiance due to aircraft attitude. The attitude correction was necessary because the light collector reference plane (SSFR
horizon) deviated from horizontal alignment due to changes in aircraft pitch, roll, and heading. No active stabilization was available for this experiment.

2.3. Cloud Physics Lidar (CPL)

The CPL is a multi-wavelength backscatter lidar built for use on the high altitude ER-2 aircraft and was first deployed in 2000 (McGill et al., 2002; 2003). It was mounted in a wing pod on the ER-2 for TC4 and looked downward. The CPL utilizes a high repetition rate, low pulse energy transmitter and photon-counting detectors. It is designed specifically for three-wavelength operation (355, 532, and 1064 nm, with depolarization at 1064 nm) and maximum receiver efficiency. An off-axis parabola is used for the telescope, allowing 100% of the laser energy to reach the atmosphere. The CPL is designed with a nominal 100 microradian field of view to minimize the effects of multiple scattering. CPL data products are typically provided at 30 m vertical resolution and 1 second horizontal resolution (~200 m at the nominal ER-2 speed of 200 m/s).

Complete instrument details can be found in McGill et al. (2002).

The CPL fundamentally measures the total (aerosol plus Rayleigh) attenuated backscatter as a function of altitude at each wavelength. Considerable data processing is required to separate backscatter from clouds and aerosol and backscatter from Rayleigh. However, for transmissive cloud/aerosol layers, using optical depth measurements determined from attenuation of Rayleigh and aerosol scattering, and using the integrated backscatter, the extinction-to-backscatter parameter (S-ratio) can be directly derived. This permits unambiguous analysis of layer optical depth since only the lidar data is required; there is no need to use other instrumentation nor is there need for assumptions...
of aerosol climatology. Using the derived extinction-to-backscatter ratio, the internal cloud extinction profile can then be obtained. This approach to directly solving the lidar equation without assumption is a standard analysis approach for backscatter lidar and more complete detail can be found in McGill et al. (2003).

2.4. ER-2 Satellite Downlink (REVEAL):

The TC4 mission provided the first opportunity for real time flight planning and aircraft coordination. The NASA-developed Research Environment for Vehicle Embedded Analysis on Linux (REVEAL) system was installed on all three of the NASA aircraft participating in TC4 (i.e. the ER-2, WB-57, and DC-8 aircraft). The REVEAL system permits real time reporting of the aircraft location and, more importantly, provides a means for real time downlinking of data from the aircraft instruments. The CPL onboard the ER-2 aircraft was one of the first instruments to utilize this new capability. Although bandwidth limitations prohibited downlinking of all CPL data, the CPL profiles were temporally subsampled at ~10 second intervals and sent to the TC4 mission operations center. Real time interpretation of the CPL profiles permitted identification of subvisible cirrus layers and the aircraft could then be vectored to the correct latitude, longitude and altitude to sample the SVC.

3. Overview of 25 July 2007 ER-2 Subvisible Cirrus Case Study

Figure 1 shows the entire flight track of the ER-2 on 25 July 2007 overlayed on the GOES Visible image from 16:28 UTC (about midway into the flight). The altitude
profile of the ER-2 is shown in the inset of the figure. For TC4 the ER-2 was based out
of the Juan Santamaria Airport near San Jose, Costa Rica. On this day the ER-2 was the
only TC4 aircraft flying. Figure 1 shows that, for the most part, the ER-2 flew over the
apparent clear sky areas in the region avoiding the larger convective cells off the east
coast of Costa Rica (except on take-off and landing), and the smaller convective cell to
the North off the east coast of Honduras.

To put the radiometric and lidar measurements into context Figure 2 shows altitude
profiles of the temperature, wind direction, and wind speed as measured by the ER-2 on
its initial climb out over the Caribbean (red lines) and by balloon sondes launched from
Alajuela, Costa Rica before (blue lines) and near the end (green line) of the flight (Selkirk
Figure 2a shows the bottom of the tropopause was at ~15 km with a small inversion
between 15-16 km. That all three profiles show this same temperature structure indicates
the location of the tropopause and the inversion at 15-16 km were consistent throughout
the flight. Figures 2b and 2c show the winds were mostly out of the east and were
stronger below the tropopause.

Figure 3 shows the CPL attenuated backscatter signal as measured from the ER-2 for
the entire flight on this day. A variable, but persistent thin cirrus layer located between
approximately 13-15 km is apparent for most of the flight even though the GOES visible
satellite image (Figure 1) seems to indicate mostly clear skies along the flight track. The
thin cirrus layer occurs just below the bottom of the tropopause as indicated in Figure 2a.
The lidar data also shows that except for near the convective cloud regions it was mostly
clear underneath this thin cirrus layer for the majority of the flight, with only scattered
low clouds below 4 km. The ER-2 pilot reported that he could not see this thin cirrus layer, even when he profiled through it. It only became apparent to him when he looked towards the horizon.

Figure 4 shows the midvisible (532 nm) optical depth and depolarization ratio (at 1064 nm) derived from the lidar data for a representative section of the thin cirrus layer. The data is given for the flight segment (times: 16:20-16:39 UTC) that occurred right after the ER-2 had completed the profile down through the cirrus, climbed back up to altitude, and then reversed course, overflying the same flight track and locations of the profile. The optical depths and depolarization ratios in Figure 4 are therefore representative of the cirrus sampled during the profile. The optical depth of the cirrus layer varies between approximately 0.01 - 0.1 but is mostly in the range of 0.02 - 0.05. These values are near or below the estimated minimum threshold for visual observation of the cloud. The measured depolarization ratio is approximately 0.4, indicative of ice clouds.

The low optical depths of these thin ice clouds and their location near the bottom of the tropopause, combined with the fact that they do not show up in the visible satellite image and they were not seen by the ER-2 pilot, are all consistent with these clouds being subvisible cirrus.

4. ER-2 Subvisible Cirrus Sampling Strategy

The ER-2 for TC4 was meant to serve as a remote sensing platform, or satellite surrogate, typically flying at a high, constant altitude of approximately 20 km. However, three factors came together in TC4 that provided an opportunity to directly measure the
radiative heating rates of the subvisible cirrus by having the ER-2 deviate from its
nominal flight pattern and profile down through the cirrus layer. First, the high altitude
of the SVC put them within reach of the ER-2. Second, as described in section 2.4, the
ER-2 was equipped with a real-time downlooking cloud lidar that gave mission scientists
on the ground the ability to direct the ER-2 to the proper coordinates and altitudes to
sample the SVC. Third, the broadband IR and spectral solar irradiance radiometers on
the ER-2 provided measurements of the net irradiances as a function of altitude from
which the heating rates could be determined.

Figure 5 shows an idealized schematic of the flight profile flown by the ER-2 to
sample the subvisible cirrus layer. On the initial northbound heading in the Caribbean
(see Figure 1) the presence, altitude and thickness of the cirrus was detected in real-time
by the cloud lidar (see Figure 3). At the very north end of that leg the ER-2 began to pass
over a convective system off the east coast of Honduras. Therefore, the ER-2 was
directed to reverse course, and once south of the convection, was given the altitudes to
descend to in order to sample the previously seen SVC. As shown in Figure 5, the flight
pattern consisted of a level leg above and below the cloud, and a descent and ascent
through the cloud. The ER-2 began its initial descent from 20 km at approximately 15:25
UTC and eventually returned to its nominal altitude at approximately 16:30 UTC, so the
complete "dip" maneuver into the SVC took about 65 minutes. The flight times of each
leg are given in Figure 5.

5. Measured Subvisible Cirrus Heating Rates
The heating or cooling rate for a given layer in the atmosphere is defined as (Liou, 1980):

\[
\frac{\partial T}{\partial t} = 86400 \times \frac{g \cdot \nabla F}{c_p \cdot \Delta p}
\]

where \(T\) = temperature (degrees Kelvin), \(t\) = time (day), 86400 = number of seconds per day, \(g\) = gravitational acceleration (=980.616 cm sec\(^{-2}\)), \(c_p\) = specific heat at constant pressure (=1.004 x 10\(^7\) cm\(^2\) sec\(^{-2}\) K\(^{-1}\)), \(\Delta p\) is the difference in pressure between the lower and upper altitude boundaries of the given layer, and \(\nabla F\) is the difference between the net irradiances at the lower and upper boundaries of the given altitude layer. The broadband solar and IR net irradiances measured from the ER-2 as it profiled through the SVC layer are used here to determine the heating rates of the cloud.

Figure 6 shows the net broadband solar irradiances measured by the SSFR instrument on the ER-2 as it profiled through the SVC layer. The net broadband solar irradiance is defined as the difference between the downwelling and upwelling solar irradiance at a given altitude. While the SSFR is a spectral instrument we are interested here in determining the complete solar heating rate of the SVC, therefore we have integrated the SSFR signal over its complete wavelength range in order to get broadband solar irradiances. The net solar irradiance measurements shown in Figure 6 have been normalized to a common solar zenith angle of 24.162\(^\circ\) to account for the change in downwelling solar irradiance as the sun rose in the sky during this portion of the flight. The data have also been corrected for the attitude (pitch, roll, and heading) of the aircraft. The solar measurements during the 180\(^\circ\) turn of the ER-2 on the below-cloud leg at ~15:48 UTC have been filtered out. The dip in the measurements near 15:44 and 15:53 correspond to a low level cloud of limited extent.
Ignoring these dips it can be seen that there is no significant change in the net solar irradiance as the ER-2 profiles through the SVC layer. The net solar irradiance measurements for the above and below cloud legs are the same, and there is no change in the net solar as the ER-2 descends or ascends through the cloud. In effect, the SVC is not "seen" in the broadband solar irradiance data, indicating that there is no significant solar radiative energy being deposited into or out of the SVC layer. The $F \nabla$ term in Eq. (1) for this case is therefore near zero, and the solar heating rate for this SVC layer is zero or negligible.

This is not the case for the IR measurements. Figure 7 shows the net broadband IR irradiances measured by the BBIR instruments on the ER-2 as it profiled through the SVC layer. The net broadband IR irradiance is defined as the difference between the upwelling and downwelling IR irradiance at a given altitude. As we did for the solar measurements, the IR measurements during the 180° turn of the ER-2 on the below-cloud leg at about 15:48 UTC have been filtered out. The large dip in the net irradiance at approximately 15:38 UTC and the smaller dip near 15:53 UTC correspond to lower level clouds of limited extent below the SVC (also see the lidar image in Figure 3 for these times).

Ignoring these dips in the data, it can be seen that the net IR irradiance at the level leg just above the cirrus is less than the net IR irradiance at the level leg just below the cirrus, and that the net IR irradiance increases approximately linearly with decreasing altitude through the cloud. Since the primary source for thermal IR radiation in the atmosphere is the Earth's surface (i.e. from below), the fact that the net IR irradiance above the cirrus is
smaller than the net IR irradiance below the cirrus indicates that IR radiative energy is being deposited into the SVC layer. This IR energy will warm the layer.

Two methods were used to estimate the IR heating rate of the SVC layer. The first method determined the heating rate from the difference in the net IR irradiance at the level leg above and below the cirrus. For this case, the measured pressure and net IR irradiance for each of the legs were averaged. For the above cloud leg the mean pressure was 113.97 mb and the mean net IR irradiance was 275.16 +/- 3.33 W m^{-2}. For the below cloud leg the mean pressure was 137.2 mb and the mean net IR irradiance was 282.03 +/- 2.33 W m^{-2}. These values were put into Eq. (1) and using standard propagation of error analysis (Bevington, 1969) the IR heating rate was found to be:

\[\text{IR Heating Rate (from level legs)} = 2.50 +/- 1.48 \text{ K day}^{-1} \]

The second method for estimating the IR heating rate used the net irradiance data during the descent and ascent legs of the profile. At first glance, this would appear to be a straightforward method. Simply use Eq. (1) to calculate the heating rate profile by numerically differentiating the measured net IR irradiances with respect to pressure (i.e. altitude) using a technique such as finite differencing. In practice this does not work because the IR measurements are not ideal. They contain noise due to both instrumentation issues and natural variability in the atmosphere (see Figure 7).and the numerical differentiation of noisy data can lead to erroneous results (Chartrand, 2005). Initial attempts to calculate the heating rate profile in this way led to wildly varying results due to the rapidly fluctuating values of \(\nabla F / \Delta p \) caused by the noise in the signal. We therefore took a slightly different approach.
The net IR irradiances for the descent and ascent legs through the SVC were combined and plotted as a function of pressure. The data from the dip in the measurements due to the lower level cloud near 15:38 UTC was not included. Figure 8 shows that the measured net IR irradiances decrease linearly with decreasing pressure (i.e. increasing altitudes). This indicates that the IR heating rate through the layer is constant. The slope of the linear fit gives the change in the net IR irradiance per mb pressure, that is, the slope of the fit gives

\[
\frac{\nabla F}{\Delta p}
\]

This was put into Eq. (1) and the IR heating rate was found to be:

\[
\text{IR Heating Rate (from profile legs)} = 3.24 \pm 1.82 \text{ K day}^{-1}
\]

The IR heating rates determined by the two methods are comparable and within the error bars of each method. The first method that used the averaged net IR irradiances at the legs below and above cloud probably gave a slightly lower heating rate because of the dip in the measurements for part of the below cloud leg due to the lower level cloud that the ER-2 passed over at 15:53 UTC. This consistency between the heating rates determined by the two methods supports the validity of the values found.

6. Comparison to Calculated Values

The heating rates measured in this paper are consistent with previous model generated values for subvisible cirrus of comparable optical depths. For example, Jensen et al. (1996a) used a detailed cirrus cloud model and the in situ microphysical aircraft measurements from Heymsfield (1986) to estimate heating rates of 1-3 K per day for SVC with optical depths in the range of 0.01 to 0.03. McFarquhar et al. (2000) also used
the Heymsfield (1986) data, plus the in situ microphysical aircraft measurements of Booker and Stickel (1982) and estimates of the SVC optical depth from the lidar on the NASA ER-2 aircraft during the CEPEX field study in 1993 as input into the Fu and Liou (1993) δ-four-stream radiative transfer code. Estimated heating rates of 1-2 K per day for SVC with optical depths of approximately 0.01 were determined. Comstock et al. (2002) used estimates of cloud optical depth and cloud base and top heights from surface lidar measurements on Nauru Island as input into the Fu and Liou (1993) code and estimated heating rates of approximately 3 K per day for a single SVC layer with an optical depth of 0.022.

As a further test of the heating rates determined in this paper we computed the IR and solar radiative heating rates for an SVC cloudy-sky case using the Rapid Radiative Transfer Model (RRTM; Mlawer and Clough, 1997; Mlawer et al., 1997). RRTM uses a correlated-k method for gaseous absorption, the Clough Kneizys Davies (CKD) 2.4 water vapor continuum model (Clough et al., 1989), and cloud ice parameterizations based on an effective size and water content (Fu et al., 1998; Fu, 1996). The key model input parameters relevant to this study are the vertical profiles of atmospheric temperature, ozone, water vapor, and cloud microphysical properties including the ice water path and a generalized effective diameter for ice (D_{ge}, e.g., eqs. 3.11-3.12, Fu, 1996).

The vertical profiles of ozone, water vapor, and temperature are provided by the Cryogenic Frostpoint Hygrometer (CFH; Vömel et al., 2007) and ECC ozonesonde launched from the Juan Santamaria Airport in Alajuela, Costa Rica at 17 Z on 25 July 2007 (Selkirk et al., 2009). The water vapor measurements extend up to about 60 mb, whereas the ozone and temperature measurements go to 10 mb. Above these levels, data
from the nearest overpass of the Microwave Limb Sounder (MLS) are used. For this
case, the solar zenith angle was 28°. For this RRTM model run the cloud optical depth,
tau, was set to 0.05. The cloud was distributed over a layer 0.5 km thick, and \(r_c = 14 \mu m \)
\((D_{ge} = 21 \mu m) \), corresponding to the value found by in situ measurements during TC4
(Davis et al, 2009, this issue).

Figure 9 shows the solar and IR heating rates determined for this case. The calculated
solar heating rate in the cloud is 0.37 K day\(^{-1}\) and the calculated IR heating rate in the
SVC is 2.64 K day\(^{-1}\). These values again are comparable to the negligible solar heating
rate and the 2.5-3.24 K day\(^{-1}\) IR heating rate determined in this paper.

7. Summary

In this paper we determined the infrared and solar heating rates of a tropical
subvisible cirrus cloud through direct measurements of the net IR and solar irradiances
above, below, and through the cloud. The measurements were made from the NASA ER-
2 aircraft as it performed a rare descent profile down through an SVC layer off the east
coast of Nicaragua on 25 July 2007 during the TC4 field study. The ER-2 lidar
measurements showed that the variable SVC layer was located near the bottom of the
tropopause at approximately 13-15 km with mostly clear skies underneath. Its midvisible
optical depth varied from 0.01-0.1, but was mostly in the 0.02-0.05 range, and its
depolarization ratio was approximately 0.4, indicative of ice clouds. The solar heating
rate was found to be negligible, however, the infrared heating rate of the SVC was
determined to be approximately 2.50-3.24 K day\(^{-1}\). These values were found to be
consistent with previous indirect observations of other SVC and with model-generated
heating rates of SVC with similar optical depths.

This direct measurement study therefore supports the current estimates that the
typical heating rate of the SVC is a few K per day with most of the heating occurring in
the IR. This study also illustrates the utility and potential of the profiling sampling-
strategy employed here and points to the need for more extensive sampling of subvisible
cirrus.

A high altitude aircraft that could make numerous profiles through multiple
subvisible cirrus equipped with solar and IR broadband and spectral radiometers, a real-
time cloud lidar, in situ cloud and aerosol probes, and state variable sensors would finally
provide a much needed comprehensive dataset for characterizing both the radiative and
microphysical properties of these ubiquitous tropical clouds.
Acknowledgements

We are grateful to Warren Gore and Tony Trias from NASA Ames Research Center for their engineering and technical support during TC4, especially with the integration of the BBIR instruments into the SSFR data acquisition system on the ER-2 aircraft. This work was supported by the NASA Radiation Sciences Program under grant no. NNH07AF56I (TC4).
References

Chartrand, R. (2005), Numerical differentiation of noisy, nonsmooth data, 9 pp., Los Alamos National Laboratory, Los Alamos, NM.

Jensen, E. J., O. B. Toon, L. Pfister, and H. B. Selkirk (1996b), Dehydration of the
upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical

Kipp & Zonen (2003), *Instruction manual CG4 pyrgeometer*, 61 pp., Kipp & Zonen,
Delft, Netherlands.

Aircraft measurements of microphysical properties of subvisible cirrus in the tropical

Liou, K.-N. (1980), *An Introduction to Atmospheric Radiation*, International Geophysics

Mace, G. G., Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D.
Winker (2009), A description of hydrometeor layer occurrence statistics derived from
the first year of merged Cloudsat and CALIPSO data, *J. Geophys. Res.*, 114,
D00A26, doi: 10.1029/2007JD009755.

McFarquhar, G. M., A. J. Heymsfield, J. Spinhirne, and B. Hart (2000), Thin and
Sci.*, 57, no. 12, 1841-1853.

Physics Lidar: instrument description and initial measurement results, *App. Opt.*, 41,
no. 18, 3725-3734.

lidar measurements of aerosol optical properties during SAFARI-2000, *J. Geophys.

Pilewskie, P., J. Pommier, R. Bergstrom, W. Gore, S. Howard, M. Rabbette, B. Schmid, P. V. Hobbs, and S. C. Tsay (2003), Solar spectral radiative forcing during the

Figure Captions:

Figure 1: The ER-2 flight track on 25 July 2007 is shown overlayed on the GOES Vis image from 16:28 UTC. The altitude profile of the ER-2 is given in the inset. The ER-2 was the sole TC4 aircraft flying on this day. (Image from NASA Langley TC4 Satellite Page: http://angler.larc.nasa.gov/tc4).

Figure 2: Profiles of (a) temperature, (b) wind direction, and (c) wind speed as measured by the ER-2 on its initial climb out over the Caribbean (red lines) and by balloonsondes launched from Alajuela, Costa Rica before (blue lines) and near the end (green line) of the flight. All three soundings in (a) show the bottom of the tropopause at approximately 15 km with a small inversion between 15-16 km. Winds were mostly out of the East (b) and were stronger below the tropopause (c). (Selkirk et al. 2009; Vogel et al, 2007)

Figure 3: The CPL attenuated backscatter signal for the entire flight on 25 July 2007 showing a persistent thin cirrus layer between approximately 13-15 km altitude. The thin cirrus layer occurs just below the bottom of the tropopause (see Fig. 2a). The ER-2 headings for the different flight segments over the Caribbean are also given (N=northbound; S=southbound; W=westbound). The location of the ER-2 profile through the cirrus is indicated, as well as the flight segment where the cloud optical depths (OD) are given in Figure 4a.

Figure 4: The (a) optical depth and (b) depolarization ratio derived from the lidar data for a representative section of the thin cirrus observed on 25 July 2007 between 16:20-16:39 UTC (see Figure 3). The optical depth of the cirrus varies between approximately 0.01 to 0.1 but is mostly in the range of 0.02 to 0.05. The estimated threshold for visual
observation is 0.03. The depolarization ratio (b) for these clouds is approximately 0.4 indicative of ice clouds.

Figure 5: An idealized schematic of the flight profile flown by the ER-2 to sample the subvisible cirrus layer. This flight pattern provided a level leg above and below the cloud, and a descent and ascent through the cloud to measure the IR and solar broadband net irradiances throughout the profile from which the heating rates were derived. The UTC flight times of each leg are given. The altitudes given are approximate.

Figure 6: The net solar irradiances measured during the ER-2 profile through the subvisible cirrus and the corresponding altitudes of each leg. The net solar irradiance data for this time segment have been normalized to a solar zenith angle of 24.162° and corrected for the attitude (pitch, roll, and heading) of the aircraft. The measurements during the 180° turn of the ER-2 near 15:48 UTC have been filtered out. The dips in net irradiance at approximately 15:43 and 15:53 correspond to lower level clouds below the cirrus.

Figure 7: The net IR irradiances measured during the ER-2 profile through the subvisible cirrus and the corresponding altitudes of each leg. Measurements during the 180° turn of the ER-2 near 15:48 UTC have been filtered out. The large dip in net flux at approximately 15:38 and the smaller dip near 15:53 correspond to low level cloud below the cirrus.

Figure 8: The net IR fluxes as a function of pressure for the descent and ascent of the ER-2 through the thin cirrus layer are combined here. The linear decrease in the net flux with altitude indicates a constant IR heating rate through the layer. The slope of the linear fit (net flux per mb pressure) is used to derive the IR heating rate
Figure 9: Calculated IR and solar heating rates for an idealized subvisible cirrus cloud using the RRTM radiative transfer code. Vertical profiles of atmospheric temperature, ozone, and water vapor from balloonsondes launched from Costa Rica on 25 July 2007, and cloud microphysical information from measurements of SVC during TC4 are used in the calculations. The cloud was 0.5 km thick with an optical depth of 0.05.
Figure 1: The ER-2 flight track on 25 July 2007 is shown overlayed on the GOES Vis image from 16:28 UTC. The altitude profile of the ER-2 is given in the inset. The ER-2 was the sole TC4 aircraft flying on this day. (Image from NASA Langley TC4 Satellite Page: http://angler.larc.nasa.gov/tc4.)
Figure 2: Profiles of (a) temperature, (b) wind direction, and (c) wind speed as measured by the ER-2 on its initial climb out over the Caribbean (red lines) and by balloon sondes launched from Alajuela, Costa Rica before (blue lines) and near the end (green line) of the flight. All three soundings in (a) show the bottom of the tropopause at approximately 15 km with a small inversion between 15-16 km. Winds were mostly out of the East (b) and were stronger below the tropopause (c). (Selkirk et al. 2009; Vogel et al, 2007)
Figure 3: The CPL attenuated backscatter signal for the entire flight on 25 July 2007 showing a persistent thin cirrus layer between approximately 13-15 km altitude. The thin cirrus layer occurs just below the bottom of the tropopause (see Fig. 2a). The ER-2 headings for the different flight segments over the Caribbean are also given (N=northbound; S=southbound; W=westbound). The location of the ER-2 profile through the cirrus is indicated, as well as the flight segment where the cloud optical depths (OD) are given in Figure 4a.
Figure 4: The (a) optical depth and (b) depolarization ratio derived from the lidar data for a representative section of the thin cirrus observed on 25 July 2007 between 16:20-16:39 UTC (see Figure 3). The optical depth of the cirrus varies between approximately 0.01 to 0.1 but is mostly in the range of 0.02 to 0.05. The estimated threshold for visual observation is 0.03. The depolarization ratio (b) for these clouds is approximately 0.4 indicative of ice clouds.
Figure 5: An idealized schematic of the flight profile flown by the ER-2 to sample the subvisible cirrus layer. This flight pattern provided a level leg above and below the cloud, and a descent and ascent through the cloud to measure the IR and solar broadband net irradiances throughout the profile from which the heating rates were derived. The UTC flight times of each leg are given. The altitudes given are approximate.
Figure 6: The net solar irradiances measured during the ER-2 profile through the subvisible cirrus and the corresponding altitudes of each leg. The net solar irradiance data for this time segment have been normalized to a solar zenith angle of 24.162° and corrected for the attitude (pitch, roll, and heading) of the aircraft. The measurements during the 180° turn of the ER-2 near 15:48 UTC have been filtered out. The dips in net irradiance at approximately 15:43 and 15:53 correspond to lower level clouds below the cirrus.
Figure 7: The net IR irradiances measured during the ER-2 profile through the subvisible cirrus and the corresponding altitudes of each leg. Measurements during the 180° turn of the ER-2 near 15:48 UTC have been filtered out. The large dip in net flux at approximately 15:38 and the smaller dip near 15:53 correspond to low level cloud below the cirrus.
Figure 8: The net IR fluxes as a function of pressure for the descent and ascent of the ER-2 through the thin cirrus layer are combined here. The linear decrease in the net flux with altitude indicates a constant IR heating rate through the layer. The slope of the linear fit (net flux per mb pressure) is used to derive the IR heating rate.

\[y = 231.07 + 0.38426x \quad R = 0.72298 \]

\[\text{IR Heating Rate (Profiles)} = 3.24 \pm 1.82 \text{ K day}^{-1} \]
Figure 9: Calculated IR and solar heating rates for an idealized subvisible cirrus cloud using the RRTM radiative transfer code. Vertical profiles of atmospheric temperature, ozone, and water vapor from balloonsondes launched from Costa Rica on 25 July 2007, and cloud microphysical information from measurements of SVC during TC4 are used in the calculations. The cloud was 0.5 km thick with an optical depth of 0.05.