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[1I] Intro<uction to &=

2]

e operating system provides environment for program execution
e primary goal: make the computer convenient to use
e secondary goal: use the hardware in an

cient manner.
OS is intermediary between user (and applications) and H/'
e S is a manager and allocator of resources

e must allocate resources efficiently and fairly
e S is a control program

e controls the execution of user programs

e prevents errors and improper use of the computer
e S is the one program running at all times on the computer

[1] Intro:

- as Intermediary [£]

user n

compiler

assembler text editor
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database
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[I] Intro: Early Systeirnis [Z]
e large and expensive machines run from a console
e programmer was also the operator
e many separate steps:

e loading/unloading of magnetic and paper tapes, punch cards
e while tapes were being mounted:

e CPU sat idle - no work was being done

[1] Intro: Evolutionary Steos [=]

e professional operator was hired

e jobs with similar needs were batched together and run as a group
e resident monitors transferred control from job to job

e overlapped CPU and I/C operations were introduced

e replaced card readers, line printers with magnetic-type units

e readers and printers were operated ofi-line

e replaced tapes (sequential-access) with disks (random-access)
e introduced simultaneous peripheral operation on-line (spooling)

[1] Intro: Spooling [7]

‘ 4[ /O

slow input devices slow output devices

[1] Intro: Multiprogramimiing [2]
e increases CPU utilization
organizes jobs so that CPU always has something to execute
S keeps several jobs in memory
S picks and begins to execute one of the jobs
e CS switches to/executes another job when current job waits
e when a program does I/C, the CPU works on another program
all the jobs are kept in the job pool
e on disk awaiting allocation of main memory
if not enough memory, ©S must choose (job scheduling)
e OS allocates memory (memory management)
OS allocates CPU to one process (ZPU scheduling)




Multicrograss

[1] Intro: Memory favout for

monitor

job 1

job 2

job 3

job 4

512K

[1] Intro: Eatch Systeinis [

e multiprogrammed but do not permit interaction with the user
e appropriate for executing large jobs that need little interaction
But

e user provides commands to handle job steps (may be dependent)
e programs must be debugged statically

[1I] Intro: Time-Sharing Systeiis
e multiprogrammed and do allow interaction with the user
e switch rapidly from one user to the next

e each user has impression of their own computer
e programs can be larger than physical memory (virtual memory)
e programs interact with user (short time before it needs to do I/C)

[1I] Intro: Frocess Vanageiient i3
e ©S manages processes, memory, files, networking
e a process is program in execution
e TS is responsible for process management:
e creation/deletion of both user and system processes
e suspension/resumption of processes
e process synchronization, communication and deadlock handling

[1] Intro: “eriory Managerient [
e CPU directly addresses main memory (and no other storage device)
e S is responsible for memory management:

e which parts of memory are being used and by whom

e which processes are to be loaded into memory

e allocate/deallocate memory space as needed

[1I] Intro: Secondarv-=Storace Vanagemient 7]
e main memory is too small for all data and programs
info lost when power is lost
secondary storage (disk) is used to back up main memory
S is responsible for disk management:
e item free-space management
e storage allocation
e disk scheduling




[#8

[1] Intro: File Wianaceiient [13]
e info stored on several different types of physical media
OGS provides a uniform logical view of info (unit of storage: file)
e TS is responsible for file management:

e creation/deletion of files and directories

e support of primitives for manipulating files and directories

e mapping of files onto secondary storage

e backup of files on stable (nonvolatile) storage media

—
[
)
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[I] Intro: Network M
e a distributed system collects

e physically separate, possibly heterogeneous systems

e into a single coherent system
e processors in system are connected by communication network
e LANs (local-area networks) and VWANs (wide-area networks)
e S generalizes network access as a form of file access

[1I] Intro: ©= Services

e TS provides services to programs and users:
e program execution and I/ operations
e file-system manipulation
e communications

error detection

resource allocation

accounting and protection

[I] Intro: Systeis Calls

e system calls: interface between running program and S
e process control
e file manipulation
e device manipulation
e information maintenance
e communications

[1] Intro: Frograsis [

e convenient environment for program development/execution:
e file manipulation and modification

status information

programming-language support

program loading and execution

communications

application programs

[1] Intro: ited Structure [15]
(the users)
shells and commands
compilers and interpreters
system libraries
system-call interface to the kernel
signals file system CPU scheduling
terminal handling swapping page replacement
character I/O system block I/O system demand paging
terminal drivers disk and tape drivers virtual memory
kernel interface to the hardware
terminal controllers device controllers memory controllers
terminals disks and tapes physical memory




[1] Intro: d Structure [17]
layer 6: user programs
layer 5: device drivers and schedulers
layer 4: virtual memory
layer 3: 1/O channel
layer2: CPU scheduling
layer 1: instruction interpreter
layer O: hardware
e ©S are complex and require a layered solution
e increases modularity
e a function only uses functions of lower-level layers
[1I] <ueues: Single :ueue [12]

model

source

queue

server

sink

ressonse

source ]ﬂ server sink

queue

[o entry for new jobs at arrival rate: X\ jobs/sec j

[o waiting line of jobs with queue length: L jobs ]

[o processor of jobs at service rate: p jobs/sec ]

[o exit for finished jobs with throughput: )\jobs/sec]

e time waiting in queue and in service: R secC ]

J

[1I] < ueues: Tutline i8

Model of Single C:ueue [source ()\), queue (L), server (u), sink]
Performance Metrics
[utilization (p), response time (R),
waiting time (), throughput ()\), number ()]
Queueing Networks [transition probability (p;;)]
Cperational Laws
Stream Law: \; = > pjiA;
Utilization Law: p; = A\;/p;
Visit (Forced Flow) Law: V; = \;/\
Bottleneck Law: Amaz = up/Vh
Little’'s Law: & = AR
M/M/1 Law: R=1/(u— )
General Response iime Law: R = R;V;
Case Study: CPU vs. 1/C

[II] <ueues:

Ferforiviance Vetrics

ratio {. utilization of server: p = \/up % busy ]
ratio [. trasfic intensity=utilization: p = \/u ]
rate [o throughput: ) jobs/sec (job flow balance) j
jobs {. number in system (queue and service): & j
time [o waiting time in queue: ¥ sec ]
time {o service time per visit to server: S=1/u sec/job]
time {o response time: R=1 S =W + 1/u sec/job ]




[1I] Networks: probability p;; from: device i to ;

[21]

) A H1 o p2
series O—Jo— @ —o
78
P =
N,
M3
2
N
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cycle O—"*Je5 -0
Ao P
o \=10,4; = 15, up = 20, uz = 15 )
values o py =2/3,pp=1/3,p=0.1,u = 150
J
[1I] Cueue Stream: Law: &, =1 pj; A 23]
Law e job flow is conserved at split/merge
e ¢ Poisson flow in = Poisson flow out
N
. e \y = )\ = )\ =10 jobs/sec
Series e throughput = X\ = arrival rate (balance) )
N
lit e\ =p1A=2)/3=6.67
Spill o Mo =po) = \/3 =3.33 |
erge e XA3=)\1 +A=2)\/3+)\/3=\=10
e throughput = X\ = arrival rate (balance)
* A1 = A+X2 = f(A\,p) =A/p =100
cycle e = (1-p) A1 =(1—-p)A/p=90
e throughput =p- A=A =10 )

[11]

erational i aws

[22

M
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6. M/M/1

7.

5. Little's

General Response

3. Forced Flow

1. Stream

2. Utilization

4. Bottleneck

[11] <ueues: = le Cutput [24]

SERIES:

Time = 1000.00 (n)  (rho) (")) (1ambda) (R) (p_ij)
Type Rate # Jobs J, Busy Avg jobs Job rate Job time Prob.

1 source 10.0 10030 83.21 3.031 10.030 0.302197 1.00

2 fifo 15.0 10030 67.31 2.070 10.030 0.206351 1.00

3 fifo 20.0 10030 49.19 0.961 10.028 0.095828 1.00

4 sink 0.0 10028 83.21 3.030 10.028 0.302197

SPLIT/MERGE

1 source 10.0 9994 82.69 2.902 9.994 0.290346 0.67 0.33

2 fifo 15.0 6717 44.16 0.783 6.717 0.116622 1.00

3 fifo 20.0 3277 16.42 0.198 3.277 0.060310 1.00

4 fifo 15.0 9994 66.07 1.920 9.992 0.192176 1.00

5 sink 0.0 9992 82.69 2.901 9.992 0.290346

CYCLE:

1 source 10.0 10112 58.51 2.170 10.112 0.214624 1.00

2 fifo 150.0 101138 67.59 2.170 101.136 0.021456 0.90 0.10

3 sink 0.0 10110 58.51 2.170 10.110 0.214624




[1I] <ueue Utilization Law: p; = »;/u; [25

Law [o utilization depends on flow and service rate J

® p1=A1/p1 = A/p1 = 67% busy

series
e po = )\2//1,2 = /\//1,2 = 50%

® p1 = A1/p1 = 2X/3p1 = 44%
Spllt““erge e po =Ao/puo = N/3ux=17%
® p3 =A\3/u3z = \/p3=67%

cycle [0 p=A1/p=Xpp=67% J

[1I] ueue

Visit Law: V= 2,/

series

split/merge

cycle

e visit ratio to server is the same as the flow ratio
e measures fraction of jobs which visit server

e V1 =X /A =X/A=1 (all jobs visit once)
e Vo=X/A=A/A=1

e V3 = A\ /A=2/3 (some jobs visit)
° VQ =)\2/)\=1'3
L V3 =>\3/)\ = )x/)\zl

[. V =X\;/A = 1/p=10 (repeat visits)

[1I] ©ueue Eottleneck &

Amaz = o/ Vo [27]

e bottleneck is server with highest utilization: pmas

—aw e bottleneck limits maximum throughput: M.z

e Utilization Law: find bottleneck b with pmax

step 1 e bottlenext b service rate:

e Visit Law: find V, = A,/

step 2 e maximum system throughput: Amaz = 1p/Vj

e stable system: \; < u;

e bottleneck: pmaz = \p/pp = closest X to u
e Visit Law: \; = \V;

e bottleneck: Ay = AV <

e maximum system throughput: AmazVj < g

proof

® Mmaz = wp/Vy

[1I] ©ueue Eottleneck [ aw:

Amaz = P/ Ve [2&

series

split/merge

cycle

goal

split/merge

® pmaz = 67% at bottleneck b=1
® Amaz = p1/V1 = 15/1 = 15 jobs/sec

® pmax = 67% at bottleneck b =3

® Pmax =67%
® \maz =p/V =pu =0.1-150=15

e improve throughput by fixing the bottleneck b
e minimize the maximum utilization
e then fix next bottleneck b

e reduce bottleneck b = 3 to the same as p; = 44%
e p3 = A3 =44% = uz = \/44% = 22.7

J




[II] iittle’s faw: O =7

response R
BLACK BCX
arrivals \ with departures \
< jobs
e mean number = arrival rate X mean response
e queue and server: & = AR
ittle’s e subsystem in netvvprk: i = MRy
e network system: i"l—jsg,/s = )\sysRsys
Law

e job flow balance

queue: queue length L = A\ (waiting time)
assumption: arrivals = departures

J
[II] iittle’s ¢ = AR [21]
e given: R; = 0.2, R, = 0.1 secs
e U1 = ARy = (10)(0.2) = 2 jobs
® Rsys = 0.2+ 0.1 =0.3 secs
o (Usys =ARsys = (10)(0.3) = 3 = 2 4 1 jobs
lit /1 e given waiting time in queue: ¥¥; = 0.05 secs
SPIL/MErge | 11 =A1171=(6.67)(0.05)=0.33 jobs )
| e given: R = 0.02
cycle e O =\R = (10/0.1)(0.02) = 2 jobs
J

[II] Little’'s Law: O = )R [
Job Number n Number in System q Time in System t
(a) (b) 4 (c)
Arrival — 3
2 2 2
o Ry 0.
/| ~—Departure
01234567 01234567 1 2 3
Timet Time t Job Number n
i (a) Yarrival — Ydeparture = (b) )
rules * (a) Taeparture — Tarrival = (C)
e (a) Area = (b) Area = (c) Area=J =9
Cittle's e (b) mean number in system & = % = % X % = AR
_ e {; = arrival rate x mean time in system
Law e O=AR: 3/7Tx9/3=9/7 )
[1I] Cueue & ) [22]

viarkov=Poisson=memoryless

rkov arrivals at rate A

e iviarkov service at rate p

e C parallel servers connected to one queue

e high probability of & jobs = +£1 in small time
frame

[o Markov arrivals, service to a queue with 1 server]

e time until next event does not depend on the time
since the last event

less e if long time since job arrival, the expected time
until the next job is still 1/A

e if 1 hr since last job, expected time is 0.1 secs

memory-

(Markov)




[1I] <ueue & E=1/(p—2) [22]
response e response time: R = u%\
P e Little's Law for system: & = AR = A
B=A )
e expected queue length: L
length e =1L+ probabizlity server is busy (p)
e L=0—p= A
u(p—2X)
o e Little's Law for queue: L = AV
waiting o waiting time: 1 = —2
p(p—=X) )
J

[1I] General Response Time Law: R = 7V, [35

series

split/merge

cycle

e system response time is mean time for jobs: R
e R = sum of server times weighted by visit ratio
Little's Law for system: &

Little's Law for server:
e number in system: © = Q1 + Up + ... + Un
o U =AR=MARq+ MRy ..+ Rn

R = RiA1/X =+ A2/ARy + ... = A/ ARn

e R=>R)V;

e R=R1V;3 — RV, =Ry +Rp,=02-+01=0.3
sec

e R=RyVy + RoVs + RaV3 )

« R = (0.12)(2/3)+(0.06)(1/3)+(0.20)(1) = 0.30 |

[. R =R;V;= (0.02)(10)=0.2 ]

series

split/merge | o

cycle

wr R=1/(u—2) [24]
response: R; = 1/&/” —21)=1/(15-10)=0.2
waiting: 1y = L 10 —=0.13 secs

p(p1—>1) _ 15(15—10)
service: S; = 1/j; = 1/15 = 0.07 sec

response = waiting -+ service (0.2=0.13-+0.07)
R2 = 1/(/12 — )\2) = 1/(20 - 10) =0.1

Ry =1/(15-6.67)=0.12

R, =1/(20-3.33)=0.06

R; =1/(15-10)=0.20

77, =6.67/15(15-6.67)=0.05
L3 =10%10/15(15-10)=1.33

R=1/(150-10/0.1)=0.02
W =100/150(150-100)=0.013

1. Stream

2. Visits

—
~
[
) =
LIRS

p1 \

e 2L e —

T epu p% -
D/\4]§H

A1 = A+Xx = f(\,p) =\/p=50 jobs/sec

Ao =(1-p) A1 =(1 —p)\/p=45 jobs/sec

A3 =p- A\1=X=5 jobs/sec (job load balance)
Aq =X2/3=(1—-p)A\/3p=15 jobs/sec

Vepu = A1/A=1/p=10
VI/O = V2 = V3 = V4= )\4/)\ =(1_p)/3p=3




[1I] Case Stuc

[1I] Tase Study: O [27]
I H A1 A o
3.Utiliza- ® pePU =4 = ——=0.5=50%
17 pm
i = po=p3 = po =t = L —0.3=30%
tion ®PIjO = P2 =P3 = P4 =, = ETY =

4 . Bottle- .

neck

step 1: pmaz = 50%, up = 100 at b = CPU

step 2: visit ratio V, =1/p

Amaz = pp/Vy = puy = (0.1)(100) = 10 jobs/sec
usually I/C is bottleneck but 3 1/C's

o)

Little’s

7. Seneral

Response

question

=1 —0.020 sec
B1—=A1 p1=M/p
1 1
= —=0.029 sec
w2—Aa  pp—(1—p)A/3p

Ropy =

R0 =

A .
=M\R = =1.0 jobs
{CPU VCPU = T J

(1-p)A
3ppo—(1—p)A

‘I/O =)\4RI/O = =0.43 jObS

R =’ R;V; =RcpuVcrpu + 3R;;0Vi/0

=1 4 34-P) __0.46 sec
pr1—X  3pup—(1—p)A

L

what if there are n I/C processors? 3 —n

[I1II] Frocess

Manageimmient Cverview

outline .

[A] Processes
[B] CPU Scheduling
[C] Process Synchronization

process is the execution of a program
creation, execution, deletion of processes
OS schedules which process gets the “PU next
many processes appear to run concurrently
orderly (synchronized) access to shared data
Interprocess Communication (IPC)

e semaphores and shared data

e messages

[III.A] Frocess: Tefinitions [

prograiti

srocess

program: source code compiled to executable
passive entity and resides on disk

process. a program in execution

active entity and the unit of work

data for the variables used by the instructions
also called a job or task

long time to switch heavyweight processes

short time to switch lightweight processes
subprocesses inside a process

Zentral Processing Unit or processor
executes processes, performing the instructions




[III.A] =rocess: Tefinitions [£%]
running [o one process is running, or executing, on the CPU]
concur-

[o time-share CPU - appear to run simultaneously ]
rent

cooszerat- |,

interact and affect each other
share data or resources

ing e synchronous
: e asynchronous: not cooperating (no interaction)
state [o current activity or condition (e.g. running) j

suspended o

waiting for memory - then joins the ready queue]

J

[III.A] Frocess: Tefinitions [22]

i

[

waiting for access to the CPU

not waiting for I/C or some other event

in the ready queue - list of process IDs (PIDs)
ready — running: scheduled for CPU

running — ready: interrupted by scheduler
running — waiting

not ready to use the CPU

waiting for I/C or memory

waiting for a semaphore to be signaled
e waiting for a message to be received

e waiting for Input
e waiting for Cutput

ot

A Process Wanager [44

(keyboard) getline

READING

(console) putline, putchar

T WRITING |

[III.A] Frocess: State Thanges [23]
\ new |— admitted exit——if‘ term |
h g interrupted h g
- ~ —,
Figure 4.1 | ready | | running |
) scheduled g
1/ or event . I/ or event wait
completed L | waiting |—
e new processes admitted to ready queue

e ready process is scheduled for CPU

e current running process returns to ready
changes e or terminates

e or waits for 1/ or other event

state

WRITING

wakeup sleep
SLEEPING |«

send receive
RECEIVING |«

signal wait
WAITING

resched

—-| READY CURRENT
T resched

suspend suspend

create, process

resume
destroy




[1II.A] ©
o free:
e suspended:

S: States [25]
not in the system - unused PID’s

waiting for admittance to ready queue

see long-term scheduler in Memory Management

e ready: waiting for the CPU

e running: executing on the CPU

e waiting: for a semaphore signal (synchronization)
e receiving: waiting for a message send

e sleeping: waiting for a wakeup timer

e writing: output to console

e reading: input from keyboard

[1II.A] Frocess <Control Elock {

pointer
process state
process number
program counter
registers
memory limits
list of open files

Figure 4.2

e each process has its own PCB
e program counter (pc) points to the next instruction to be executed
e information is sufficient to stop/restart process (context switch)
e store all registers, etc. in PCB;
e put PI; back in ready queue (or other queue)
e remove PI7, from ready queue, load registers based on PCB»
e start executing PI7Z, at pcC register

[III.A] -vsteri Calls [4¢
process (pid,prio) : free — suspended
resume (pid) suspended — ready
suspend (pid) ready — suspended
running — suspended
set_prio (pid,prio) ready — running
running — ready
resched O : ready — running
running — ready
wait (sem) running — waiting
signal (sem) waiting — ready
receive (&pid) running — receiving
send (pid,msg) receiving — ready
sleep (delay) running — sleeping
wakeup (pid) sleeping — ready
putline (str) running — writing
(console) O : writing — ready
getline (str) running — reading
(keyboard) () : reading — ready
destroy (pid) <any> — free
[III.A] Frocrami Counter (:
| I I
\ / pc-> |
I \ I /
I I \ pc—> \
/ I /
pc—> | / /
/ \ / /
I \ / \
I pc—> \ \
\ / \

e each process (or thread) has a pc

e increments sequentially but branches for loops and conditionals )




[1II.A] Context =

executing |
S > dispatcher . idle
SAVE: PCB 1 .
LOAD: PCB 2 ------------ >

idle . executing |

dispatcher <----——------- v
SAVE: PCB 2
| <————mmmm——— - LOAD: PCB 1 . idle

executing v

e CPU is switched to another process
e state (PCB) of the old process is saved
e saved state of the new process is loaded

[I1II.A] Interrugts [5C
e event that alters the sequence of instruction execution
e S is interrupt driven:
sits quietly (no polling) until told there is something to do
e interrupt is generated by hardware or software
Steps:
e interrupts (usually) are disabled to prevent new ones
e S gains control of CPU
e OS saves state of interrupted process (if user process: PCB)
e OS analyzes interrupt, passes control to interrupt handler routine
e predefined number of routines
e index into table (interrupt vector) that points to routines
e routine processes interrupt
e restore state of interrupted process (or some “next” process)
e interrupts (usually) are enabled to allow new ones
e interrupted process (or ‘“next”) executes

1

[I1II. 4] Interrugts [
software interrupts:
e program check interrupt: division by zero, bad memory location
e system call to ©S kernel (trap)

e kernel is aware of process crossing its border

e example: read()

1]

e kernel's device driver processes request
loads registers in device controller and starts controller

e controller transfers data to buffer

e when controller is finished: generates a hardware 1/C interrupt
hardware interrupts:
e I/ interrupt

e 1/C completed, CPU can restart user process or “next” process
e external interrupt: expiration of quantum on clock

e allows CS dispatcher to context switch to next process

[III.£] Frocess =cheduling 52

only one process at a time is running on the CPU
process gives up CPU:

if it starts waiting for an event
e Ootherwise: other processes need fair access
e ©S schedules which ready process to run next
time slice or quantum for each process
scheduling algorithms

e different goals

e affect performance




[III.£] Scheduling: Tefinitions [54]

o

‘:‘_J_v:oun{o most of its time doing computation - little I/C j

I1/<-5ound {. most of its time doing I/O - little computation j

e classified into different groups
multilevel | o foreground (interactive) vs.
scheduling | ® background (batch)

e each group has its own ready queue

[III.£] Scheduling: Tefinitions [53]
e job scheduler
e which process on disk should be given memory?
long-terii | ¢ result: new process in ready queue
scheduler |°® important in batch systems
e Mmany processes in memory =
high degree of multiprogramming
short- e ZPU scheduler
teri e which process in ready queue should be given CPU
L e result: new process on TPU
scizeculer
[III.£] Ferforiiance: Tefinitions [55]
e percentage of time that the CPU is busy.
tilizati e if not busy, ready queue must be empty
utifization e« CPU actually executes NULL process
e goal: keep the CPU busy
thrrouci:- e if busy, then work is being done
sut e number of processes completed per second
e total time to complete a process
e includes waiting in the ready queue
turnarouns| ¢ executing on the CPU
e waiting for 1/
e goal: fast turnaround

[III.£] Ferforiiance: Tefinitions

e time waiting in the ready queue and

e executing on CPU until some output produced
e average is across all output events

e goal: fast response time

resionse

e sum of periods spent waiting in ready queue
waiting e average is across all visits to ready queue
e goal: short waiting time

e scheduler has a direct effect on waiting time
e decides which process in queue gets to run next
e remaining processes must then wait longer

e CS cannot control code, amount of I/C, etc.




[III.£] Ferforimance: Summary [57] [III.2] <7~ U Surst [:

e UTILIZATICN: CPU %busy
e THRCUGHPUT: jobs/sec

¢ WAITING: sec/job =il burst
e RESPCNSE: sec/job (usually in time-share systems)

¢ TURNARCUND: sec/job (usually in batch systems)

e cycle of CPU burst, I/C wait, CPU burst, ...
program and data determine length of burst
scheduler may interrupt a burst

but does not affect the full length

I; scanf n, a, b /* I/0 wait */
“‘ for (i=1; i<=n; i++) /* CPU burst */

WAITING (”7) X = x + axb;
printf x /* I/0 wait =*/

for (i=1; i<=n; i++) /* CPU burst */
for (j=1; j<=n; j++)

RESPONSE (R) % =%+ by
printf x /* I/0 wait =*/

TURNAROUND (Rsys)

tn

[1II.£] Scheduling:

[1II.£] Scheduling:

e First-Come, First-Served is simplest scheduling algorithm
e ready queue is a FIFZ queue: First-In, First-Cut

e longest waiting process at the front (head) of queue

e new ready processes join the rear (tail)

e assume processes arrive in this order: Py, P, P3
e honpreemptive scheduling
e average waiting time: (0-+24-+-27)/3=17 ms

e nhonpreemptive: executes until voluntarily gives up CPU % Zantt chart
e finished or waits for some event Pl 3 Py | P> | P \
2 0 24 27 30
e problem: P3 3

e Z“PU-bound process may require a long “PU burst
e other processes, with very short CPU bursts, wait in queue
e reduces CPU and I/C device utilization

e assume processes arrive in this order: P, P3, P;
e average waiting time: (6--0-+3)/3=3 ms

PID Burst -~
e it would be better if the shorter processes went first B 3 Santt chart
% | P2 | Ps | Py
Ps 3 6 30
P, 24

e in general, FCFS average waiting time is not minimal
e in general, better to process shortest jobs first




[III.£] Scheduling: Round Rob } [21]
e similar to FCFS, but preemption to sw1tch between processes
time quantum (time slice) is a small unit of time (10 to 100 ms)
process is executed on the CPU for at most one time quantum
implemented by using the ready queue as a circular queue
head process gets the CPU
uses less than a time quantum = gives up the CPU voluntarily
uses full time quantum = timer will cause an interrupt

e context switch will be executed

e process will be put at the tail of queue

[1II.5] Scheduling:

assume processes arrive in this order: Py, P>, P3

e preemptive scheduling

e time quantum: 4 ms

e P; uses a full time quantum; P,, P3 use only a part of a quantum
e P; waits 0+-6=6; P, waits 4; P3 waits 7

e average waiting time: (6-+4-+7)/3=5.66 ms

P12 BUSt Gantt chart
P 3 | Di|P[P PP PP P
P 3 4 7 22 26 30

e very large time quantum = RR = FCFS
e very small time quantum = context switch is too much overhead
e quantum =~ CPU burst = better turnaround

e rule of thumb: 80% should finish burst in 1 quantum

[III.£] Scheduling: Shortest-Job-First (SJF
e assume the next burst time of each process is known
e SJF selects process which has the shortest burst time
e optimal algorithm because it has the shortest average waiting time
impossible to know in advance
e ©S knows the past burst times - make a prediction using an average
nonpreemptive
or preemptive:

e shortest-remaining-time-first

e interrupts running process if a new process enters the queue

e new process must have shorter burst than remaining time

[1I.E] Scheduling: SJF

e assume all processes arrive at the same time: Py, P>, P3, P4
e honpreemptive scheduling
e average waiting time: (3+16-+9-+0)/4=7 ms

PID Burst

P 6 Zantt chart

P, 8 P P | P3| P

P 7 0 3 9 16 24
Py 3

e SJF is optimal: shortest average waiting time
e but burst times are not known in advance
e next_predicted burst time by (weighted) average of past burst times
et =a-tpn+(1—a) m
e next_predict = a- last_observed + (1 — a)- last_predict
e o = 0 = next_predict = initialized value (usually 0)
e a = 1 = next_predict = last _observed




[III.=] =JF: Weighted Average Surst

[III.2] Scheduling: SJF

Tpi1 =otp + (1 —-a)at,_1+ -+ (1- a) 1z
a=1:1,.1=1tn

a=01:!T,.1=10

a =1/2 : recent and past history the same

time 01234 5 &5 7
Surst (t;) 6 4 6 4 13 13 13
Guess (r;) 10 8 6 6 5 5 11 12
1 ] 1- ; 1,5~ -
Tl_EtOfET():E;:-fElu::

e assume processes arrive at 1 ms intervals: Py, Py, P3, Py
o preemptive scheduling: shortest-remaining-time-first
e P waits 0+(10-1)=9; P> waits 1-1=0

e P3 waits 17-2=15; P, waits 5-3=2
average waiting time: (9+-0+15+2)/4=6.5 ms
PID Burst Arrival

P 8 0
P5 4 1
P3 9 2
Py 5 3
Zantt chart
P| P, | P4 Py P
01 5 10 17 26

e nonpremptive SJF: 7.75 ms

[III.2] Scheduling: Friority

e assume a priority is associated with each process
e select highest priority process from the ready queue
e let 7 be the (predicted) next CPU burst of a process
e SJF is a special case of priority scheduling
e assume: high numbers = high priority
e then priority is 1/7
e assume: low numbers = high priority
e then priority is 7
e equal-priority processes are scheduled in FCFS order
e PRIC can be preemptive or nonpreemptive
e priorities can be defined internally
e memory requirements, number of open files, burst times
e priorities can be defined externally
e user, department, company

[;

assume all processes arrive at the same time: Py, P>, P3, P4, Ps
e honpreemptive scheduling

high priority: low number

e some S use a high number!!! See VS.

average waiting time is: (6+0-+16-+18-+1)/5=8.2 ms

PID Burst Priority

[III.£] Scheduling: F

Py 10 3

P5 1 1

P3 2 3

Py 1 4

Ps 5 2

Zantt chart

Pl Ps | Py | Ps [Py
01 6 16 1819

¢ indefinite blocking (starvation): low priority process never runs
e aging: low priorities increase with waiting time, will eventually run
J




[11I.

for (i=1; i<=10; i++){ /* 10 CPU BURSTS */
for (j=1;j<=HOWLONG;j++) /* 1 CPU BURST */
pm_busywait(); /* PID1:1long PID2:medium PID 3:short*/
pm_yield(); /* GO BACK TO READY QUEUE */
}
PRIC FCFS SJF
PID Burst priority=fixed priority=equal priority=1/burst
1 long 2 1 low
2 medium 3 high 1 medium
3 short 1 low 1 high

schedulers favor different PIDs

¢ SUMMARY shows <PU burst (running) time for each PID
SUMMARY shows waiting time for each PID in ready queue
Santt chart shows how long each PID is on the CPU

e schedulers have different performance

SUMMARY
FREE SUSPENDED READY RUNNING WAITING RECEIVING SLEEPING WRITING READ
PID time cnt time cnt time cnt time cnt time cnt time cnt time cnt time cnt ...

0 0 1 o o 72 2 17 3 o o o o o o o O
1 29 2 1 1 25 11 34 11 o o o o o 0 o 0
2 64 2 0 1 1 11 24 11 o 0 o o o o o O
3 16 2 1 1 58 11 14 11 o o o o o 0 o 0
4 89 1 0 0 0 0 o o o 0 o 0 o o o o
5 89 1 0 0 0 0 o o o O o O o o0 o o0
6 89 1 0 0 0 0 o o o 0 o 0 o o o o
7 89 1 0 0 0 0 o o o O o O o o o o
8 89 1 0 0 0 0 o o o O o O o o o o
9 89 2 0 1 0 1 0 1 o O o O o o0 o o0
TOT 643 14 2 4 156 36 89 37 o o o o 0o O (O )

Utilization: 80.9 %Busy
Throughput : 2.0 Jobs/Min
Wait Time : 28.0 Sec/Job
Burst Time : 24.0 Sec/Job

L |
)
[

Scheduling Algorithm: PRIO
>>> SUMMARY (READY) <<< >>>>>>>>>>> SUMMARY (RUNNING) <<<<<<<<<<

PID TOT Wait Time TOT Burst Time / Cnt = Single Burst
1 25 34 11 3.1

2 1 24 11 2.2

3 58 14 11 1.3

Sum Wait Time: 84 /3 Jobs Sum Burst Time: 72 /3 Jobs
Avg Wait Time: 28 Sec/Job Avg Burst Time: 24 Sec/Job
Longest Wait: 58(PID: 3) Longest Single Burst: 3.1(PID: 1)
Shortest Wait: 1(PID: 2) Shortest Single Burst: 1.3(PID: 3)

e other algorithms will have different average wait time

Gantt chart of CPU Usage (Last Scheduler: PRIO)

+ + + + + + +

PID o 12 12 12 12 |2 12 12
time 9 15 17 20 22 24 27 29
PID 12 12 12 1211 1 11 1 1 1 11
time 31 34 36 3839 42 46 49 52 56 59
PID 11 1 1 1113 1313 1313I3 [3I3 [3]3
time 63 66 69 7374 7677 798081 8384 8687

e other algorithms will favor different PIDs




[1II.=] Wechanisit

p—
|
(€8]

el

e how to do something
e implementation or function with parameters
e used in many ways (by policies)
nisit ¢ ©S may be micro kernel - only basic mechanisms
e policies are decided at the user level

iriecha-

¢ what or when to do something

e set of rules

policy e use mechanisms by setting parameters

e important choices in the design of the CS

¢ mechanisms should be separate from policies

echanisiii vs. Folicv:

[1I1.2

Policy 1: if LOW_PRIORITY Timer(0.1) else Timer(1.0)
Timer(x sec) .
Policy 2: if LOW_PRIORITY Timer(0.1) else Timer(0.2)

Policy 1: schedule(I/0 Job A); Schedule(CPU Job B)
Schedule(job) i
Policy 2: Schedule(CPU Job A); Schedule(I/0 Job B)

Policy 1: if A.running > 0.1 sec then Preempt(Job A)
Preempt (job) .
Policy 2: if A.running > 0.2 sec then Preempt(Job A)

Policy 1: Remove Ready Q(oldest job): FCFS
Remove From

Ready Q(job) PoliCcy 2: Remove Ready Q(highest priority job): PRIC

Policy 3: Remove Ready Q(shortest job): SJF

[III.<] Frocess Synchironization
e semaphores and classical problems
interprocess communication (IPC)
cooperating processes:
e synchronized (orderly) access to shared globals
e process control:
e mechanism to prevent execution until a certain event occurs
e send of a message
e wakeup of a sleeping process
signal of a semaphore
e wait and signal guarantee only one process
at a time executes a critical section of code
e protects the shared access to global variables

le =rotleir

[1II.Z] <ritical Section: =xas

program code: global variable x:
x=0; 0
X++; 1
printf x; 1 <=== output

e interleave 3 processes executing the same program code:

PID 1 PID 2 PID 3 X:
x=0; 0
X++; 1
x=0; 0
x=0; 0

printf x; 0 <=== output
X++; 1

printf x; 1 <=== output
X++; 2

printf x; 2 <=== output




Solution  [77]

[III.<] Zritical Section: A

Shared Variable:
int v=0; /% v==0 => critical section OPEN; v==1 => critical section CLOSED */

Code: At p; € {1,...,n}:
while (1) {

/* trying region */
while (v == 1) /* do nothing */ ;

v =1;

/* critical section (region) */
x = 03

X++;

printf x;

v = 0;
/* remainder region */

}
e what is wrong? what if critical section is: dial phone("555-1212")7
e how can it be fixed? e is this spinlock good or bad?

[1II.Z] Zritical Section: General Frobl

e n processes each with segment of code called critical section
e one process changes common (shared) variables, writes to a file.
e no other process is allowed to execute in its critical section
e execution of critical sections is mutually exclusive in time
e one solution: semaphore
e lets one process into the critical section
¢ puts other processes in a semphore queue (no busy waiting)
e process is finished: head of FIFC queue enters section

[III.{] Ser vait an< signal [

(1) Train 1 Arrives (2) Train 2 Arrives
semaphorelGC : /
. wait?
critical section
[TTTTTITTTIT]
/wait? /

(4) Train 2 Leaves
signal GO

E’{l

(3) Train 1 Leaves

7

/ sanar.

[1II.<] Semaphore: wait and signal
e critical sectlon general solution

while(1) {
pm_wait(sem);
/* critical section or region */
pm_signal(sem);

}

e critical section: example solution

while(1) {
pm_wait(sem);
x=0;
X++;
printf x;
pm_signal(sem);




[1II.C] Semaphore: Initialization [22]

[1II.<] Semaphore: wait and signal [81
e semaphore has count and FIFC queue of waiting processes
struct {
int count=1;
FIFO queue;

} semaphore;

e count > 0 = queue is empty
e count of negative n = queue has n waiting processes

wait(semaphore) : if (--semaphore.count<0){
put_at_tail(pid,semaphore.queue);
suspend(pid) }

signal(semaphore) : if (semaphore.count++<0){
pid=get_at_head(semaphore.queue);
ready(pid) }

e usually first process to wait is allowed access to critical section
e next process to wait is placed on the semaphore queue
e until the first process is finished (signal)
e to guarantee this first access, initialize either:
e by setting count=1:
sem = pm_seminit(1);
e by setting count=0 and then signal:
sem = pm_seminit(0);

pm_signal(sem) ;

[1II.Z] Seriaphore: Count

PID 1 PID 2 count
sem=pm_seminit (1) ; 1
pm_wait(sem) ; 0
| pm_wait(sem) ; -1
(critical) |
v
pm_signal(sem); 0
pm_wait(sem); I -1
| (critical)
v
pm_signal(sem) ; 0
| pm_wait(sem); -1
(critical) |
v
pm_signal(sem) ; 0

[1II.<] <ritical Section =Solution
e mutual exclusion:
e guarantee only one process is executing its critical section
e also called “safety”
e progress:
e guarantee that all processes make steps through program code
e also called “liveness”
e FIFZ queue = progress
e LIFC queue = some processes may face starvation
e fairness:
e guarantee that all processes will be able to access the resource
e eventuality: by some time
e time-bounded: by a specified time
e turn-bounded: by some specifed number of tries




[III.<] <ritical Section: Teadlock [25]
e deadlock:

e all processes are waiting indefinitely for some event to occur

e that can only be caused by one of the waiting processes

e “mutual waiting”

e none of the processes make progress
Kansas legislature:

VWhen two trains approach each other at a crossing,

both shall come to a full stop

and neither shall start up again until the other has gone.

[1II.<] Semaphores: Teadlock [85]
e process 1 waits for semaphore S and <:

pm_wait(S);

pm_wait(Q);

/* critical section */
pm_signal(S);
pm_signal(Q);

e process 2 waits for semaphore < and S:

pm_wait(Q);
pm_wait(S);

/* critical section */
pm_signal(Q);
pm_signal(S);

e both processes are deadlocked as each are waiting for the other

[III.<] <lassical Froblemis: Introduction 27]
e classical problems are simple but represent complex, real problems
e show important features of real problem/solution
e examples from S and real-time applications
e main points:
¢ mutual exclusion to critical section code
e synchronized access to shared resources and data

[1II.<] Sining [88
problem \ \\
\ food
1 chopstick
e 2 philosophers
e 2 chopsticks (1 pair) )
] e How can both philosophers eat?

questions

e How to share resources?

answer [o TAKE TURNS USING RESCURCES ]




[1II.<] Sining ilosopiers

Rule 1: a philosopher thinks.

Rule 2: a philosopher gets 2 chopsticks (1 pair).

Rule 3: a philosopher eats.

Rule 4: there are only 2 chopsticks (1 pair).

Rule 5: after eating, philosopher puts down 2 chopsticks (1 pair).

Exercise 7a: Philosopher 1 uses the 2 chopsticks
(1 pair) to eat. Then Philosopher 2 uses the 2
chopsticks (1 pair) to eat. Both make progress
and the access to the resources (chopsticks) is
synchronized.

S
Exercise 7a: Philosopher 1 gets one (1) chopstick.
Philosopher 2 gets the other (1) chopstick. Neither

demo-2

[III.<] Sining Fhilososhers

e each chopstick is a semaphore
e a philosopher waits for access to 2 chopsticks
e a philosopher signals when finished eating

while(1) {
/* philosopher thinks */
pm_wait(chopstickl);
pm_wait(chopstick2);
/* philosopher eats */
pm_signal(chopstickl);
pm_signal(chopstick?2);

can eat. Both are deadlocked.

[III.Z] Surns’ Tining losophers [2%]

Shared Variables:
1. FORK: semaphore array [0..n — 1], initially all available
Code: At p; € {0,...,n —1}:

do forever
if even(:) then {
wait(FORK;4+1) /* left fork */
wait(FORK;) /* right fork */
}
if odd(z) then {
wait(FORK;) /* right fork */
wait(FORK;4+1) /* left fork */
}
/* Critical region */
signal(FORK;)
signal(FORK;+1)

[1II.Z] Froducer/Consuinier
problem
data = — data
e VWhat if producer is faster than consumer?
estions e Vhat if buffer overflows?
au at if consumer is faster than producer?
e hat if buffer is empty?
answer e PRCDUCER WAITS FCR NCT FULL
e CONSUMER YWAITS FOR NOT EMPTY




[1II.<] Froducer/Consuinier [

]

Rule 1: the producer puts data in the buffer.

Rule 2: the buffer holds only 5 numbers.

Rule 3: the consumer gets data from the buffer.

Rule 4: the producer waits for the buffer to be not full.
Rule 5: the consumer waits for the buffer to be not empty.

Process 1 is a producer of data. Process 2 is a consumer of data.

Exercise 8a: Producer puts data into buffer; con-
sumer gets data and writes it.

demo-OK

Exercise 8b: The producer fills the buffer with 5
numbers, then waits for the consumer to signal
that the buffer is not full. 7The consumer reads
from the buffer, then waits for the producer to sig-
nal that the buffer is not_empty. Both are dead-
locked.

J

[1II.] Readers/Viriter

many readers OK: |FILE —data
problem one writer CK: FIi_E «=data

T OK: data—t:»—::»data
ti ““hat if readers are reading data from file?

questions /hat if writer is writing data to file?

e READERS * > W
answer T _ ~

e WRITER WAITS FCR SCLE ACCESS

[1II.<Z] Froducer/Consuinier

e producer waits for the buffer to be not full

producer waits for access to the buffer (mutual exclusion)
producer signals after access to the buffer (mutual exclusion)
producer signals that the buffer is not empty

while(1) {
pm_wait(not_full);
pm_wait(sem_buffer);
/* put data into buffer */
pm_signal(sem_buffer);
pm_signal (not_empty) ;

Vriter

[1II.] Readers/

Process 1 and 2 read data from a file.

Process 3 writes data to the file.

Rule 1: if a process reads data, another process can read data.
Rule 2: if a process writes data, another process cannot read data.

Exercise 9a: Readers 1 and 2 read from the file
and Yriter 3 waits. 7 hen, Vriter 3 writes to the

demo-TK file and Readers 1 and 2 wait. All make progress

and the shared access to the file is synchronized.

T he readers see a consistent file. )

Exercise 9b: ‘writer 3 writes to the file before
Readers 1 and 2 are finished reading from the file.
The readers do not see a consistent file. VWriter 3
needs to use a semaphore.




[1II.] Readers/Viriter
e reader waits for writer to finish writing
e reader signals to writer when all readers are finished reading

while(1) {
pm_wait(sem_readcount);
readcount++;
if (readcount==1) pm_wait(sem_wrt);
pm_signal(sem_readcount);

pm_wait(sem_readcount);

readcount--;

if (readcount==0) pm_signal(sem_wrt);
pm_signal(sem_readcount) ;

}

e writer waits for access to the file
e writer signals after access to the file

while(1) {
pn_wait(sem_wrt);
/* write to file */
pm_signal(sem_wrt);

}

[III.Z] Ticarette ¢ kers

Process 1, 2, and 3 are smokers. Process 4 is an agent.

Rule 1: smokers need 3 products: tobacco, paper, matches.

Rule 2: Smoker 1 needs tobacco, 2 needs paper, 3 needs matches.
Rule 3: the agent puts tobacco on the table and Smoker 1 smokes.
Rule 4: the agent puts paper on the table and Smoker 2 smokes.
Rule 5: the agent puts matches on the table and Smoker 3 smokes.

Exercise 10a: Each smoker gets to smoke in turn.
All make progress and the access to resources is
synchronized.

demo-OK

J

Exercise 10b: Smoker 1 gets to smoke while the
other smokers wait for a signal that Smoker 1 is
done. But Smoker 1 is waiting for its turn again.
All are deadlocked.

demo-2

[III.<] Ticarette =

o1
tobacco \_ J
) \“a aper A
problem | Agent| . Ppaper | | 2 | Smokers
matches ~ [ _
3
e VWhat if three products are needed to smoke?

YWhat if each smoker needs a different product?

uestions . . ) )
q e VWhat if agent provides product only in turn?
e How to allocate resources?
e AGENT: SIGNAL and WAIT FCR PRCDUCT
answer

¢ SMOKER: VwWAIT and SIGNAL FOR PRGCDUCT

[1I1.Z] Ticarette Siiokers [Z

e Smoker 1 waits for tobacco to be supplied by the agent
e Smoker 1 signals to the agent when finished

while(1) {
pm_wait(tobacco) ;
/* smoke */
pm_signal(tobacco) ;

e agent signals that tobacco is available

e agent waits for the smoker to finish
while(1) {

pm_signal(tobacco);
pm_wait(tobacco) ;




[III.<] IF < MMessace: send and receive
e process receives messages from pid

while(1) {
msg = pm_receive(&pid);

}

e process sends messages to pid=7

pid=7;

while(1) {
pm_send(pid,msg++) ;

}

e process sends and receives messages from pid

while(1) {
msg = pm_receive(&pid);
pm_send(pid,msg++) ;

}

[1II.{] WViessace Teiio

e Process 1 waits on a semaphore
e Process 1 sends a message to Process 2
pid = 2;
while(1) {
pm_wait(sem);

pm_send(pid,msg) ;
}

e Process 2 signals the semaphore
e Process 2 receives a message from Process 1

demo-: [Exercise 11a: Both processes make progress.

demo-BAD (Exercise 11b: Both processes are deadlocked.

[III.Z] <lient/Server

Process 1 is a server. Process 2 and 3 are clients.

Rule 1: a client sends a message for action by the server.
Rule 2: the server receives the message from a client.
Rule 3: the server sends an answer back to the client.
Rule 4: the client receives the message from the server.

Ex12a: Server waits in receiving for a message\
from a client. Each client sends a message and
waits in receiving for an answer. T he server receives
each message, in turn, and sends back an answer.j

Ex12b: Server receives both messages but does not
send back answers to either client. The clients are
waiting for answers and the server is waiting for

[III.<] <lient/Server

e a client sends a message for action by the server

e the client receives a message from the server
while(1) {
pm_send(server_pid,msg) ;

msg=pm_receive(&server_pid) ;

}

e the server receives and sends messages

new messages. All processes are deadlocked.




[11.<] Rin

ring ° o ——

8 processes wait for messages on a ring network.

Rule 1: receive a message.

Rule 2: message-+--.

Rule 3: if the message has gone around the ring, “finished”.
Rule 4: else, send the message to the next process on the ring.

[III.<] Star Network

1)

star —

8 processes wait for messages on a star network.

Process 1 is the center. The others are on the rim.

Rule 1: receive a message.

Rule 2: message——-.

Rule 3: rim only: if message not from center, send message to
center.

Rule 4: rim only: if message has gone to all processes, “finished"”.
Rule 5: center only: send message--- to the remaining processes.

Exercise 13a: All processes are deadlocked, wait-
ing for a message. Send, Process 1, message “0".
The message goes to all processes on the ring.

Exercise 13b: The message does not go to any
other processes on the ring. All processes are dead-
locked waiting for messages.

J
e process receives message and sends to next process on ring
while(1) {
msg=pm_receive (&pid) ;
};r;l;send(nextpid,msg) ;
¥
[III‘:] Star Network [‘ ]
Exercise 14a: All processes are deadlocked, wait-
L ing for a message. Send, Process 1, message “0".
demo-CK _ .
i he message goes to all processes on the rim of
the star.
Exercise 14b: The message does not go to any
demo-2 processes on the rim of the star. All processes are
deadlocked waiting for messages.

J




[III.C] Star Network
e rim process receives a message and sends to the center process

while(1) {
msg=pm_receive(&pid) ;
if (pid != center_pid)
pm_send(center_pid,msg++) ;

}

e center process receives a message and sends to rim processes

while(1) {
msg=pm_receive (&pid) ;
msg++;
for (all rim processes which do not have the message)
pm_send(rim_pid,msg++);

}

[1¥] Teadlock: Introduction [110]
e finite number of resources distributed to competing processes
e physical: memory space, CPU cycles, 1/ devices
e |ogical: files, semaphores
e multiple instances of a resource type
e process requests, uses, releases resource
e deadlock:
set of procs waiting for release from one (or more) members of set

o

[IV] Teadlock: Necessary Con<itions
e mutual exclusion: at least one nonshareable resource
hold and wait: at least one proc holds resource, waits for other
e NO preemption: resources can only be voluntarily released
circular wait: Py waiting for Py ... waiting for Py

e circular wait = hold and wait
if you can break any one of these conditions = no deadlock

R —

[Iv] Seadlock: Resource-Zllocation Grach

e

_,
®
S|
l c
o
w
\
)
\ w
| @
Q
3
3
o
3
-+

e NO cycle = no deadlock

e deadlock = cycle (necessary condition)

e cycle = maybe deadlock (but not sufficient condition)
e single instance resource A cycle = deadlock

e (necessary and sufficient)

[Iv] Seadlock: Multicle Instance =esources [1:Z

DEADLCCK:

R1 R2
reques/ \ / YSsignment

(P1) (P2) (P3]

NC DEADLCCK:

ENEREN

request

(P1)




[Iv] Methods for Handling Teadlock
e never let deadlock occur
e prevention: break one of the 4 conditions
e avoidance: resources give advance notice of maximum use
e let deadlock occur and do something about it
e detection: search for cycles periodically
e recovery: preempt processes or resources
e don't worry about it (UNIX and other ©S)

[Iv] Seadlock: Frevention

e cheap: just reboot (it happens rarely)

[Iv] Seadlock: Frevention
e break no preemption:
e process 1 requests resources already allocated to process 2:
e process 1 forfeits its current resources
e if process 2 is waiting for other resources: process 2 forfeits
e used for resources whose state is easily saved/restored
e CPU registers and memory space
e but not printers or tape drives

e break circular wait:
e order all resources by unique numbers (tape drives, etc.)

e processes request resources in increasing order

e break mutual exclusion:
e read-only files are shareable
e but some resources are intrinsically nonshareable (printers)
e break hold and wait:
e request all resources in advance
request (tape, disk, printer)
e release all resources before requesting new batch
request (tape,disk), release (tape,disk), request (disk,printer)
e disadvantages: low resource utilization, starvation

[Iv] Seadlock: Avoidance [115]
e processes give advance notice about maximum usage of resources
e processes make actual requests when they need a resource
e avoidance algorithm: allocate request only if it yields a safe state
a sequence of processes exists
such that each process can still get their maximum in sequence
e conceptually the processes could be run in this order

unsafe

deadlock

safe




[1v] Deadlock: Exairiple of Avoidance 117]

e assume that system has 12 tape drives

maximum needs current needs

Py 10 5
P 4 2
P, 9 2
TOTAL 23 9

e sequence < Py, Py, P> > is a safe sequence
e P, requests one more tape drive:

maximum needs current needs

P, 10 5
P 4 2
P, 9 3
TOTAL 23 10

e no safe sequence < Pyq,... > because P, and Py could deadlock
e for avoidance with multiple instances: use Banker’s Algorithm

[IvV] Avoidance with: Single Instances

SAFE:
R1
assignment \\claim
N \/'_\
(P1] (P2)
- N y ~
AN R2 /
N
UNSAFE (P2 requests R2): cycle
R1
assignment \\claim
. N
P1] (P2
— N —
AN R2

[IV] —eadlock: Tetection

e single instance resource types:
e periodically make a wait for graph
(just remove resources from the allocation graph)
e check for cycles (n?)
e multiple instance resource types:
e use a time-varying banker's algorithm
e how often should detection algorithm be run?
e how often is deadlock likely?
e how many processes will be affected?

[Iv] Seadlock: Recovery

e process termination
e abort all deadlocked processes
e abort one process at a time until cycle eliminated
e run detection algorithm each time
e which process to abort next?
e priority? CPU usage? how many resources?
e resource preemption
e take resources from some processes and give them to others
e select victim: cheapest cost?
e rollback: to safe state and restart
e starvation: deadlock could occur again, process restarts
e include number of rollbacks in cost




e resources belong to classes
e order the classes hierachically (each gets unique number)
e use appropriate technique within class
Example of 4 classes:
e internal resources: for PCBs, etc.
order the resources within the class
e central memory: for a user job
preemption because a job can always be swapped out
e job resources: for tape drives, etc.
avoidance because of job-control cards
e swapable space: for user jobs on backing store
preallocation because maximum requirements known

[I%/] =anker: Tata Structures

#define MAXN 10 /* maximum number of processes */
#define MAXM 10 /* maximum number of resource types */
int Available[MAXM]; /* Available[j] = current # of unused resource j */
int Max[MAXN] [MAXM]; /* Max[i][j] = max demand of i for resource j */
int Allocation[MAXN][MAXM]; /* Allocation[i]l[j] = i’s current allocation of j*/
int Need [MAXN] [MAXM]; /* Need[il1[j]l = i’s potential for more j */

/* Need[i][j] = Max[i][j] - Allocation[i][j] */
Notation:

X <Y iff X[¢] <Y[:] for all 4

(0,3,2,1) is less than (1,7,3,2)

(1,7,3,2) is NC7T less than (0,8,2,1)

Each row of Allocation and Need are vectors: Allocation; and Need;

[1v] Seadlock: =
e multiple instances of resource types =
cannot use resource-allocation graph

e banks do not allocate cash unless they can satisfy customer needs
when a new process enters the system

declare in advance maximum need for each resource type

cannot exceed the total resources of that type
later, processes make actual request for some resources
if the the allocation leaves system in safe state

grant the resources

122]

e otherwise
suspend process until other processes release enough resources

le

[Iv] SEanker: Exart
Initially:
Available

ABC

10 67
Later Snapshot:

Max - Allocation = Need Available

ABC ABC
332

PO
P1
P2
P3
P4

BN O W N e
w N O N O
w N NN W
O N W N O
O B O O =
N B, N O O
B O O = N >




[Iv] SEanker: =afety Alg

[Iv] Eanker:

e consider some sequence of processes

e if the first process has Veed less than Available
it can run until done
then release all of its allocated resources
allocation is increased for next process

if the second process has Need less than Awatlable

then all of the processes will be able to run eventually
= system is in a safe state

STEP 1: initialize
Work := Available;

for i = 1,2,...,n
Finish[i] = false
STEP 2: find i such that both
a. Finish[i] is false
b. Need_i <= Work
if no such i, goto STEP 4
STEP 3:
Work := Work + Allocation_i
Finish[i] = true
goto STEP 2
STEP 4:

if Finish[i] = true for all i, system is in safe state

[IvV] Eanker: Safety Exa

[

Using the previous example, < Py, P3, P4, Py, Py > satisfies criteria.

Max - Allocation = Need <= Work Available

ABC ABC ABC ABC
P1 322 200 122 332 332
P3 222 211 011 532
P4 433 002 431 743
P2 902 302 600 7465
PO 753 010 743 104 7

10 5 7<<< initial system

[Iv/] =anker: Resource-Redquest &

gorit!

STEP 0: P_i makes Request_i for resources, say (1,0,2)
STEP 1: if Request_i <= Need_i
goto STEP 2
else ERROR
STEP 2: if Request_i <= Available
goto STEP 3
else suspend P_i
STEP 3: pretend to allocate requested resources
Available := Available - Request_i
Allocation_i := Allocation_i + Request_i;
Need_i := Need_i - Request_i
STEP 4: if pretend state is SAFE
then do a real allocation and P_i proceeds
else

restore the original state and suspend P_i




[Iv] Eanker: Resource-=eguest

Say P; requests (1,0,2)

Compare to Meedy: (1,0,2) < (1,2,2)
Compare to Available: (1,0,2) < (3 3 2)
Pretend to allocate resources:

Max - Allocation = Need Available
ABC ABC ABC ABC
PO 753 010 743 2 3 0k
P1 322 3 0 2k« 0 2 0k
P2 90 2 302 6 00
P3 222 211 011
P4 4 33 002 431

Is this safe? Yes: < Pi, P3, Py, Py, P> >

Can P4 get (3,3,0)7 No, (3,3,0) > (2,3,0) Available

Can Py get (0,2,0)? (0,2,0) < (2,3,0) Available

Pretend: Awvailable goes to (2,1,0)

But ALL Needs are greater than Awailable = NOT SAFE

vianageiiient L

’ i ]
e CPU runs program instructions only when program is in memory
e programs do I/C sometimes = CPU wasted

e solution: multiprogramming (multitasking)

multiple programs (processes) share the memory

one program, at at time, gets CPU

simultaneous resource possession (CPU and memory)

better performance (response time, throughput)

[+ ferim S [Z
enter
In Memory
P 1\input queue}
resource request * execute | 1/O request —l_’
/ ) ’ \\ long-term
dispatch preempt scheduler

| |short-ter { suspended | memory allocated
./ |scheduler - S
T ~~ memory deallocated
resource received P N 1/O completion \|
exit

(" blocked

(ready queué}

e long-term : job scheduler (memory management)

e which jobs allocated memory and allowed into the system
e short-term: CPU scheduler (process management)

e which job allocated the CPU

Storace HHierarchiv

CPU CPU

|registers| |contro| store |registers\ \control store internal

local cache local cache

memory

global cache
main memory

1/O cache

on-line
fixed-head disk
removable disk
magnetic tapes

external
memory

| off-line




[V.A] Merory: Devices

memory type capacity access time technology
control store 1K-32K words 3-100 ns SRAM, RCM
registers 8-256 words 3-10 ns SRAM

CPU cache 8 KB -1 MB 3-100 ns SRAM,DRAM
main memory 128 KB - 4 GB 20-200 ns DRAM

1/C cache 32 KB-1MB 20-200 ns DRAM

disk drive 1 MB -100 GB 10-65 ms magnetic disk
tape drive 20 MG or more seconds magnetic tape

{ source program |
.\ y

compiler/assembler

object module

Y,

:| compile time

source code

relocatable code

symbolic address

relative address

<verlavs

70K

pass 1

construction of
symbol table

e program does pass 1; then pass 2

main memory

symbol table 30K
common routines 20K
overlay driver 10K 80K
pass 2
code
generation

e programmer controls memory
e used when physical memory size was limited

_,-""Z)ther
’ object linkage editor —
{ modules
(" load module 3 load time
/‘static
’ s'ystem — absolute code absolute address
\ library )
{ dynamic * /" binary image .
’ system ’_.’ ) \ run time
library | . In memory )
vnaiiic Relocation
34000
limit
register Memory Management Unit (MMU) 14346
20000 - relo.catlon 14000
logical register
cPU address 14000 physical
——| space
346 logical physical address
o address + address space

e |logical address :

as seen by CPU

e physical address: as seen by memory unit
e to relocate program/data: move and change register
e save both registers during a context switch




operating system
process P1|

1. swap out

user space process P2

2. swap in

main memory

backing store

swap-out: executing job (round-robin)

swap-in : old job (maybe dynamic relocation)
roll-out,roll-in: low priority for high priority

2 jobs x (100K size x 1000K/sec - 8ms latency) = 216ms
quantum: much larger than 216ms

viermiory: Zontiguous Allocation

e program and data space are in sequential memory addresses
e single-partition: ©S and one program
e relocation register and limit register
e protect ©S and user program from each other
e multiple-partitions: many programs with their own partition
e required for multi-programming
¢ fixed-partition scheme (IBM ©S/360 MFT)
e variable-partition scheme (IBM ©S/360 MVT)

scheduling &
job queue
process memory time
Py 600K 10
P 1000K 5
P 300K 20
P, 700K 8
Ps 500K 15
TOTAL 58

Scheduling Discipline:

Job: FCFS
CPU: Round-Robin (Cuantum=1)
Memory: 2560 KB

Dynamic Storage Allocation Strategy: Best fit

scheZuling Tetails
time|1 2 3 4 5 6 7 8 9 10 11 12 13 14
Py 111 2 2 2 3 3 3 4 4 4 5 5
P o1 1 1 2 2 2 3 3 3 4 4 4 5
P3 0O o0 1 1 1 2 2 2 3 3 3 4 4 4
time | 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Py 5 6 6 6 7 7 7 8 8 8 9 9 9 10
Py 0] 0 1 1 1 2 2 2 3 3 3 4 4 4
P3 5 5 5 6 6 6 7 7 7 8 8 8 9 9
time | 29 30 31 32 33 34 35 36 37 38
Ps 0 0 1 1 1 2 2 2 3 3
Py 5 5 5 6 6 6 7 7 7 8
P3 9 10 10 10 11 11 11 12 12 12
time | 39 40 41 42 43 44 45 46 47 48 49 50 51 52
Ps 3 4 4 5 5 6 6 7 7 8 8 9 9 10
P3 13 13 14 14 15 15 16 16 17 17 18 18 19 19
time | 53 54 55 56 57 58
Psg 10 11 12 13 14 15
P | 20




/ Usage vs.

0 14

operating system
400K

P1 P5

900K
1000K

P4
P2

1700K

2000K

P3

2300K

2560K

0 0 0
t=14 t=28
os os os os os
400K 400K 400K 400K 400K
P1 PS5
P1 P1 P1 terminates allocate P5
900K
1000K 1000K 1000K 1000K 1000K
P4
P2 P4
P2 terminates allocate
- =
1700K 1700K 1700K
2000K 2000K 2000K 2000K 2000K
P3 P3 P3 P3 P3
2300K 2300K 2300K 2300K 2300K
2560K 2560K 2560K 2560K 2560K
V.A] Meriory: Search Strateaies

/.A] Memory: External Fragimentation

o
e’

[

[

list of memory holes: which one to use?
first-fit : allocate the first hole which is big enough
best-fit : allocate the smallest hole which is big enough

e produces the smallest left-over hole

worst-fit: allocate the largest hole
e produces the largest left-over hole

strategy search time memory utilization

first-fit
best-fit

worst-fit

fast
slow
slow

good
good

bad

e request for memory cannot be satisfied
e even though total free memory is sufficient
e but not contiguous (broken into small holes)
e first-fit or best-fit may be better
e 50-percent rule:
e given ¥ allocated blocks = 0.5/ blocks unusable (1/3 wasted)
e solution: compaction or paging




viemmiory: Internal Fraciientation

os
P7
next request:
18,462 bytes
hole of 18,464 bytes
P43

e allocated memory slightly larger than requested memory
e overhead to keep track of small hole may be larger than hole itseIfJ

.A] Memiory: Faging

h

e

&,
...

[

e goal: eliminate external fragmentation

e (allow noncontiguous processes)

e each process is a set of fixed-size pages

e pages are stored in same-size physical memory ‘“frames"”
page table “connects” logical pages with physical frames
may still have internal fragmentation

h

o

[
ey,

paction Techinicues

0 0
os os os
300K 300K 300K 300K
P1 P1 P1 P1
500K 500K 500K 500K
600K |__P2 600K|__P2 600K |__P2 600K |__P2
P3
800K pa
1000K pa 1000K
P3 P3
1200K 1200K 1200K
1500K 1500K
P4 P4
1900K 1900K
P3
2100K 2100K 2100K 2100K

e move 600K, or 400K, or 200K
e dynamic relocation and swapping

~aging

logical physical

address address
o (Lo le]  [ef o
memory

PTLR|
p
f

logical address: p (page) and d (displacement/offset) in page
physical address: f (frame) and d (displacement/offset) in frame
P7TBR: Page Table Base Register

P7TLR: Page Table Length Register




iiory:
page byte frame byte
0 0 0 0
1 4 1 4
2 8 2 8
3 12 page table 3 12
4 16
logical memory
5 20

e byte ‘g’: logical address =1 10 = 6
e byte ‘g’: physical address = 101 10 = 22

‘UOJB| —x‘—-"

| :!'tQ"l(D|Q.ﬁU’N|

physical memory

mory:

page size: 2"
logical address space:

2m

page number

page number: high-order m — n bits
page offset: low-order n bits

page offset

Addresses

iiory: Logical

en =10 and m = 32

typedef union {
struct {
unsigned int page :22;
unsigned int offset:10;
} logical;
int addr;
} laddr;
laddr 1;

e page 0: 0..1023

e page 1: 1024..2047

e page 2™~ = 4,194,304

e 1 = 1026; /* page=1, offset=2 */

D d
m-—n n
[v Multiple Frocesses/ Tatles
logical page physical
memory table memory
o | 0] 6] —

1 | 1] 0] | |0

P7 2| | 2| 3| et

3 3|10 |2

“’ “’ | 3

| 4

J— J— 5

of | o[ 2] " ]s

1 | 1] 1] |7

P43 2| | 2| 5| | | 8

3| 3] 8] L |9

4 4|9 10

e each process has own page table
e small page tables: fast registers
e large page tables: main memory

e context-switch: save/load PTBR

e memory access: 2 x 100 ns = 200 ns




—
“m!"

/.A] Translation !

logical
address

page frame

number number

physical
address

TLB hit
. e .

TLB miss

physical

memory

—
“m!"

/.A] Memory: Multileve

I Facin

]

Ao
|

outer-page table

e reduces the size of one monolithic page table/process

e 3-level paging: SPARC
e 4-level paging: Motorola 68030

p2

inner-page table

desired frame

‘-unu
wlml
M

(

[

e if miss, then go to full table in memory
e hit ratio: 80% (depends on number of registers)
e effective memory access =
e 0.80 x (20 ns registers + 100 ns memory) -+
e 0.20 x (20 ns + 100 ns -+ 100 ns) = 140 ns
e hit ratio: 98% = 122 ns

iriory: Table Fragmmientation [2

e page tables can be large (say 4MB for each process)

e creates its own form of memory fragmentation

e solution 1: pages of page tables (multilevel paging)

e solution 2: all processes share “NE page table (of “active” pages)
e inverted page table (really used with “virtual” memory)

/.A] Memory: Inverted Face Table

—
“m’“

logical physical
address address
w P[] [T e
memory
search
f
pid p

e one entry for each real page (frame) of memory

e why is the offset f equal to the frame number?

e what happens if a fault occurs (page is not in memory)?
e where is the external page table?




eiriory.

segment table

seg 0 seg 3
i s
subroutine stack 1400
limit  base
seg 4 seg 0 —
symbol 0 [1000 | 1400 2400 | limit| base _
seg 1 table 1| 400 6300 CPU 4.EE| physical
sart 2 400 4300 3200
seg 2 3 | 1100 | 3200 hvsical memory
R seg 3 sica
main 4 [ 1000 | 4700 9 logical yes TN address
program 4300 adgress ¢ {+ 3
4700 | __seg 2 N
- % no
seg 4 trap: segment limit error
5700
6300

6700 seg 1

e supports user view of memory
e logical address space is a collection of segments (name and length)
e address = [segment name or number] [offset]

e segment table in registers
e segment table in memory (with STBR and STLR)
e may need associative registers for cache

e closely related to partitions (but several per program)

entation rentation

e no external fragmentation

e large tables Hn

e segmentation
e external fragmentation

e small tables 'i page tbl base |seg len
e easy protection at segment level I trap memory
e easy sharing at segment level segment table

e solution: paged segmentation

page table for segment s




irtual iriory: Introcduction [
e up to now: all of a process in main memory (somewhere)
e partitions, pages, segments

e NOW: virtual memory
e allow execution of processes which may be partially in memory
e benefits:
e programs can be large and memory can be small
e increased multiprogramming = better performance
e less I/C for loading/swapping programs
e why programs don’'t need to be entirely in memory:
e code for unusual error conditions
e more memory allocated than is needed
e some features of program rarely used
e VM is the separation of user logical memory from physical memory

ble
logical address space physical address space paging device
page O B -
page 1
page 2 page table
memory map
memory ANy /’
page n
disk

virtual memory

e |logical address vs. physical address
e demand paging: only “necessary’” pages are brought into memory)

5
o
-
Q
-
)
o

—page  FTBR| FTLR] FTVR]
0 -1 |  J
1 1]
frame bit 2L Y
- 3 B
0| A 0| 4 v 4| A 0
1B 1 i s | [ (] [a]
2| C 2|6 v 6| C 2
35 E T 1| o] ]
4l E 4 i 8 -1 |
5| F 59 v 9| F 5
6 10| -1
7 % page table 1 [T . )
120 ] [1] )
logical memory physical memory frame table disk

e page table: points to frames

e frame table: points to pages

e (this implementation only works with one process)
e bit: is page loaded into a frame?

Fage Fault
3a. find page on disk
os
2. trap

load M 1. reference i

6. restart
page table
4. read in page
5. reset page table \ 3. find free frame

physical memory




story of Fage A
e trap to ©S - save user registers and process state bit = 1
e determine that interrupt was a page fault bit ::ft:ll
e check page reference and location on disk  reference first_time = t1
e issue read from the disk to a free frame (old page not DIRTY) 1L gst-time = i
e wait in queue for device f:ft_:rl
e wait for seek and/or latency last_time = t5
e begin transfer
e while waiting, allocate CPU to other user
e interrupt from the disk (I/< completed) 0 p— p— p— -~
e save registers and process state of other user t1 to

e determine that interrupt was from disk

e correct page table (desired page is now in memory)
e wait for CPU to be allocated to this process again
e restore user registers, process state, new page table
¢ RESUME execution

Table in e Reference in |

typedef struct { void page_ref (page) {

unsigned int frame:22; int frame,old_page;

unsigned int bit : 1; /* 1 => frame is valid */ clock++;

unsigned int dirty: 1; /* 1 => frame has been updated; needs writing */ page_range(page) ;

unsigned int ref 1; /* 1 => the page has been referenced */ frame = PTBR->entries[page].frame;

int cnt; /* how many references */ if (PTBR->entries[page] .bit == INVALID) {

int first_time; /* swap-in time for page */ frame = find_frame();

int last_time; /* last time referenced */ old_page = FTBR->entries[frame].page;
} page_entry; if (old_page '= NIL) {

if (PTBR->entries[old_page] .dirty)
write_block(old_page,frame) ;
reset_page(old_page);

typedef struct {
page_entry entries[MAXPAGES];
} page_table;

reset_page (page) ;
read_block(page,frame);
set(page,frame) ;
PTBR->entries[page] .first_time = clock;
}
PTBR->entries[page] .cnt++;
PTBR->entries[page] .ref = REF;
PTBR->entries[page] .last_time = clock;

typedef struct {
int page;
} frame_entry;

typedef struct {
frame_entry entries[MAXFRAMES];
} frame_table;

page_table *PTBR;

frame_table *FTBR;




Sets anc

void reset_page(int page) {
page_range(page) ;

PTBR->entries[page] .frame = 0;
PTBR->entries[page] .bit = INVALID;
PTBR->entries[page] .ref = NOREF;
PTBR->entries[page].cnt = 0;

}

void reset_frame(int frame) {
frame_range (frame) ;
FTBR->entries[frame] .page = NIL;

}

void set(int page,int frame) {
page_range(page) ;
frame_range(frame) ;

PTBR->entries[page] .bit = VALID;
PTBR->entries[page] .frame = frame;
FTBR->entries[frame] .page = page;

>eletion

:] Initialization an:

void init_tables(int tot_pages,int tot_frames) {
int page,frame;
PTLR = tot_pages;
PTBR = (page_table *) malloc(sizeof (page_entry)*PTLR);
FTLR = tot_frames;
FTBR = (frame_table *) malloc(sizeof (frame_entry)*FTLR);
FIVR = -1;
for (page=0; page<PTLR; page++)
reset_page(page) ;
for (frame=0; frame<FTLR; frame++)
reset_frame(frame);

}

void delete(int page) {

page_range(page) ;

if (PTBR->entries[page] .bit == VALID) {
frame = PTBR->entries[page] .frame;
if (PTBR->entries[page].dirty)

write_block(page,frame);

reset_frame(frame);

}

reset_page (page);

program 1 - -
0 of1 [v
ll:. 1 H
2 1. ref 5 0 V 6. set 2,v .
EEE— ! 4. if DIRTY
2. find victim swap-out
sz -
5. swap in
program 2
0 o[3 Jv .
1 12 v 3. seti \ J
2[1 | 204 [v
logical address page tables physical address disk

e frame table’s page numbers do not work for multiple programs
e frame table should be collection of pointers to page entries

typedef struct {
page_entry *ptr;
} frame_entry;

Renlacerient in

int find_frame() {
int frame;
if (lvirtual) {
frame = find_free_frame();
if (frame == NIL) trap("NOT ENOUGH FRAMES FOR NON-VIRTUAL MEMORY");
}

else
switch (alg) {
case FIFO : frame = fifo_alg(); break;
case OPT : frame = opt_alg(ref_ptr+l,tot_ref,reference); break;

case LRU_TIME: frame = lru_time_alg(); break;
case LRU_REF : frame = lru_ref_alg(ref_ptr+l,tot_ref,reference); break;

case CLOCK : frame = clock_alg(); break;
case LFU : frame = 1fu_alg(); break;
case MFU : frame = mfu_alg(); break;

case ENHANCED: frame = enhanced_alg(); break;
case LRU_STACK:frame = stack_alg(); break;
}
return(frame) ;

}
e choice of algorithm affects performance (number of page faults)




int find_free_frame() {
int save_reg;
save_reg = FTVR;
do {
FTVR++;
if (FTVR >= FTLR) FTVR = 0;
if (FTBR->entries[FTVR].page == NIL) return(FTVR);
} while (FTVR != save_reg);
return(NIL);
}

e

[
e ‘replace the oldest page” (or use a free frame)
e usually implemented with a linked (FIFZ) list

int fifo_alg() {
int save_reg,page,frame,earliest_time;
save_reg = FTVR;
earliest_time = INFINITY;
do {
FTVR++;
if (FTVR >= FTLR) FTVR = 0;
page = FTBR->entries[FTVR].page;
if (page == NIL) return(FTVR);
if (PTBR->entries[page].first_time < earliest_time) {
earliest_time = PTBR->entries[page] .first_time;
frame = FTVR;
}
} while (FTVR != save_reg);
FTVR = frame;
return(FTVR) ;
}

iulator
mem> h
i(nit pages frames [pages in 1..20, frames in 1..20]
r(ead page [page in 0..19]
w(rite page [page in 0..19]
d(elete page [page in 0..19]
1(ogical addr [page:22bits offset:10bits]

a(lgorithm 0:FIFO|1:0PT|2:LRU_TIME|3:LRU_REF|4:CLOCK|5:LFU|6:MFU|
7 :ENHANCED | 8: LRU_STACK

m(ode 0:DETAILED|1:FRAMES|2:SUMMARY

v(irtual O:0FF|1:0N

n(ogo [save all reads for go]

g(o [do all reads; for SUMMARY try all frames]
q(uit

mem> quit

mem> alg O
mem> mode O
mem> init 8 3
mem> logical 1026
Page Tbl Frame Tbl  (Alg:0)

frame bit page
0 0o o0 1 < Fault 1
> 1 o 1 -1
2 0 o0 -1
3 0o o0
4 0o o0
5 [N
6 0o o0
7 0o o0

N

Logical Address page : 1 offset:
Physical Address frame: O offset: 2




mem> alg O
mem> mode 1
mem> init 8 3

mem> r 7r 0r1r2rO0r3r0O0Oré4r2r3r0Or3

rOri1
page: 7 faults: 1 frames: 7 -1 -1 time
0 2 7 0-1
1 3 7 0 1
2 4 2 0 1
0 4 2 0 1
3 5 2 3 1
0 6 2 3 0
4 7 4 3 0
2 8 4 2 0
3 9 4 2 3
0 10 0 2 3
3 10 0 2 3
2 10 0 2 3
1 11 0 1 3
2 12 0 1 2
0 12 0o 1 2
1 12 0o 1 2
7 13 7 1 2
0 14 7 0 2
1 15 7 0 1

r2r1r2rO0Ori1r?7

OO OO OAONNNN

[ T T e
© OB BB DD O

NNWwwww

~

10

10
10
10
15
15
15
15
15
20

[
“replace the page that will not be used for the longest time”
e lowest page-fault rate of all algorithms

e requires advanced knowledge of page reference string

e useful for comparison studies

[

mem> nogo
mem> r 7r 0r 1r2r0r3r0r4r2r3r0r3r2r1r2rO0Oril1r?7
rOri1
mem> go
page: 7 faults: 1 frames: 7 -1 -1

0 2 7 0-1
1 3 7 0 1
2 4 2 0 1
0 4 2 0 1
3 5 2 0 3
0 5 2 0 3
4 6 2 4 3
2 6 2 4 3
3 6 2 4 3
0 7 2 0 3
3 7 2 0 3
2 7 2 0 3
1 8 2 0 1
2 8 2 0 1
0 8 2 0 1
1 8 2 0 1
7 9 7 0 1
0 9 7 0 1
1 9 7 0 1

/i [ east Recently Used (I Rii} [25]

i

> when a page was brought into memory in the past
e CP7T: when a page is used in the future
e LRU: when a page was used in the past
“replace the page that has not been used for the longest time”
requires a logical clock time for each page (LRU _TIME)
or a stack of recent page references (LRU _STACK)
e or a list of all references (LRU_REF)
e same as ©PT but on reverse of page reference string
e optimal algorithm looking backward in time




[v 1 usin [
e better than FIFC (15) but worst than TP (9) e keep a stack of every page which owns a frame
page: 7 faults: 1 frames: 7 -1 -1 time: 1 e on each reference
‘1’ ?, T, g ‘1 1 g s find the page within the stack and remove it
2 4 2 0 1 4 2 3 push the page onto the top of the stack
(o] 4 2 0 1 4 5 3
3 5 > o0 3 4 5 6 e On page fault
0 5 2 0 3 4 7 6 if FREE frame, take it
4 6 4 0 3 8 7 6 . .
2 7 4 0 2 8 7 9 otherwise, LRU page is at the bottom of the stack
3 8 4 3 2 8§ 10 9 return its frame
(o] 9 0o 3 2 11 10 9
3 9 0o 3 2 11 12 9
2 9 0o 3 2 11 12 13
1 10 1 3 2 14 12 13
2 10 1 3 2 14 12 15
(o] 11 1 0 2 14 16 15
1 11 1 0 2 17 16 15
7 12 i 0 7 17 16 18
(o] 12 1 0 7 17 19 18
1 12 i 0 7 20 19 18

page: 7 faults: 1 frames: 7 -1 -1 stack: 7 e new page reference : 4
0 2 7 0-1 70 e current frame pages: 2 0 3
1 3 7 0 1 7 0 1
2 4 2 0 1 01 2 e current ref string: 7012030 4
g g ; g ; ; 2 g e reverse refstring: 4 0302107
0 5 2 0 3 2 3 0 1
4 6 4 0 3 3 0 4
2 7 4 0 2 0 4 2 T
3 8 4 3 2 4 2 3 1
0 9 0 3 2 2 3 0
3 9 0 3 2 2 0 3 e apply CP7T algorithm: 2 0 3 — 4 0 3
2 9 0 3 2 0 3 2
1 10 13 2 3 2 1
2 10 13 2 3 1 2
0 11 1 0 2 1 2 0
1 11 1 0 2 2 0 1
7 12 10 7 01 7
0 12 10 7 17 0
1 12 10 7 7 0 1




oroxirmations

e hardware usually does not support LRU
e but does support REF bit

e interrupt every 100 msec
move REF bit to 8-bit shift register (and clear)
00000000 = no refs in last 8 periods
11111111 = at least one ref in each period
¢ 01111111 = no ref in the recent period
smallest integer = ~ LRU

e ‘“additional-reference-bits algorithm”
e CNE bit of history

e just use the REF bit itself

e ‘'second-chance"” page-replacement algorithm

Second-<hance |

circular queue of pages

reference bits
o] o]
= o]
o]
(o] " ()
(A) (B)

e if REF then clear bit (NCREF) and move on
e next victim is a NCREF
e if all pages have been referenced then CLCCK = FIFC

frame ref page

frame table

page table

e frame table is circular queue of pages

n LRU (12)

page: 7 faults: 1 frames: 7 -1 -1 ref: 1

0 2 7 0 -1 11

1 3 7 0 1 11 1
2 4 2 0 1 1 0 0
0 4 2 0 1 110
3 5 2 0 3 1 0 1
0 5 2 0 3 11 1
4 6 4 0 3 1 0 0
2 7 4 2 3 1 1 0
3 7 4 2 3 11 1
0 8 4 2 0 0 0 1
3 9 3 2 0 1 0 1
2 9 3 2 0 11 1
1 10 3 10 0 1 0
2 11 3 1 2 o 1 1
0 12 0 1 2 11 1
1 12 0 1 2 11 1
7 13 0 7 2 0 1 0
0 13 0 7 2 1 10
1 14 0 7 1 11 1




=econ<c
e if victim is dirty then it costs time to write it out
e better to choose a non-dirty victim (Macintosh VM)

"

classl: (ref=0,dirty=0) => good page to replace

class2: (0,1) => not as good because old page needs to be written
class3: (1,0) => not good because its recently referenced

class4: (1,1) => definitely not good because it also has to be written

PASS: do

if empty frame, take it

if classl, take it

if class2, then record first instance

clear ref bit if class 2 has not been found yet

until complete pass

if class2 was found, take first instance

invariantl: there are no free frames

invariant2: there are only classl and class2 because
all bits were cleared.

poow

if the first PASS does not succeed, try one more PASS

—

[+ —ounting Alg

e maintain a count of the number of references to a page

e Least Frequently Used (LFU): “replace page with smallest count”
e active pages will have large counts
e but initialization pages will have large counts

e Most Frequently Used (MFU): “replace page with largest count”
e recent pages are active pages but will have small counts

e neither are common

e do not approximate ©

e

[

T well

e if no writing, ENHANCED = CLCCK
e in the case below, YWRITES alter the sequenc

[

rpage: 7 faults: 1 frames: 7 -1 -1 ref,dirty: 1,0
0 2 7 0-1 1,0
wpage: 1 3 7 0 1 1,0
2 4 2 0 1 1,0
0 4 2 0 1 1,0
3 5 2 0 3 1,0
wpage: O 5 2 0 3 1,0
4 6 4 0 3 1,0
2 7 4 0 2 1,0
3 8 4 3 2 0,0
0 9 0 3 2 1,0
3 9 0 3 2 1,0
2 9 0 3 2 1,0
1 10 0o 1 2 0,0
2 10 0o 1 2 0,0
0 10 0 1 2 1,0
1 10 0o 1 2 1,0
7 11 o 17 0,0
0 11 o 17 1,0
1 11 o 1 7 1,0
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using

page: 7 faults: frames:

0

R ONFR,ONRFEFNWOWNPDOWONER

=

o ©
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|m|
i

ceclaceirient &

)
#

number of page faults

N

CLOCK
LRU
OPT

number of page frames allocated

e more frames = less faults
o if [frames allocated] = 17
o if [frames allocated] = [logical pages]?

mem> mode 2
mem> init 8 8

number of page faults

FIFO

number of page frames allocated

e more frames = more faults
e FIFC may replace pages that are just about to be used again

page: 1 faults: 1 frames: 1 -1 -1 time: 1
2 2 1 2-1 1 2
3 3 1 2 3 1 2 3
4 4 4 2 3 4 2 3
1 5 4 1 3 4 5 3
2 6 4 1 2 4 5 6
5 7 5 1 2 7 5 6
1 7 5 1 2 7 5 6
2 7 5 1 2 7 5 6
3 8 5 3 2 7 10 6
4 9 5 3 4 7 10 11
5 9 5 3 4 7 10 11

page: 1 faults: 1 frames 1-1-1-1 time: 1
2 2 1 2-1-1 1 2
3 3 1 2 3-1 1 2 3
4 4 1 2 3 4 1 2 3 4
1 4 1 2 3 4 1 2 3 4
2 4 1 2 3 4 1 2 3 4
5 5 5 2 3 4 7 2 3 4
1 6 5 1 3 4 7 8 3 4
2 7 5 1 2 4 7 8 9 4
3 8 5 1 2 3 7 8 910
4 9 4 1 2 3 11 8 9 10
5 10 4 5 2 3 11 12 9 10




Allocation of Frarities
e up to now: just one process in memory and all frames are available
e m frames available for n processes
e equal allocation: m/n frames per process

e but small processes may get too many frames
e proportional allocation based on size of process: s;/S X m

e S=1>"s
e may want to increase allocation for high-priority processes
e what happens if a fault occurs and no free frames?

e local replacement: reuse a frame from the faulting process
e can not make use of under-utilized frames

e global replacement: take a frame from any process
e high-priority takes from low-priority (“stealing”)
e ‘“fate” of a process depends on the behavior of others
e tends to increase system throughput
e but may cause thrashing

T hrashing

scenario 1:
e process has a small number of frames (allocation or stealing)
e process has a large number of active pages
e process spends more time paging than executing
e scenario 2:
e ©S monitors CPU utilization
e if low utilization then increase degree of multiprogramming
e new process takes frames from other processes
- they start thrashing
e utilization decreases and ©S adds more processes
more thrashing

T hrrashiing

CPU utilization
thrashing

-

degree of multiprogramming

o
e’

[V.B : Thrashing Solutions
e use a local replacement algorithm
e thrashing process cannot steal frames
e but queue time (paging device) will increase for ALL processes
e provide a process as many frames as it “needs”
e may suspend other processes (and free up their frames)
e “need” based on locality model
e set of pages that are actively used together
e subroutines or data structures
e if full set in memory then no more faults (until new Iocality))




“inc-Set WViodel

Face-Fault Freczuency Stratecy

e approximation to the program’s locality
e let A be the working-set window
e keep list of all pages used during the last & page references

...26157777516234123444343444132344243..

window window

WS = 1,2,5,6,7 WS = 3,4

e small & = does not encompass locality

e large &~ = given too many frames

e let W SS; be the size of the working set for process i

e demand o = WSS,

e if not enough frames, then suspend processes (and free frames)
e prevents thrashing and keeps multiprogramming high as possible
e optimizes CPU utilization

e PFF Strategy
e direct approach to solve thrashing
e may need to suspend other processes to get more frames

number of page faults

increase number of frames

upper bound

lower bound

decrease number of frames

number of page frames allocated

o
e’

Frocraiit Structure

o

[+I] File Manacerient: Introcuction

e assume CS allocates < 128 frames for this process:

e each row contains one page
int A[128][128]; /* ROW MAJOR: A[0][0], A[0][1], A[0][2] ...x/
for (i=0; i<= 127; i++)

for (j=0; j<= 127; j++)
A[i1[3] = o;

e if page is 128 words, then above has 128 page faults
for (j=0; j<= 127; j++)

for (i=0; i<= 127; i++)
A[i1[3] = o;

e now there will be 128 x 128 = 16,384 faults

o files are logical units mapped onto physical secondary storage
e file name: logical object
e physical objects: blocks on disk, tape, optical disk
e one or more sectors:
smallest unit to read from or write to disk
e block: unit of I/C transfer from disk to memory
- improves efficiency
e secondary storage: nonvolatile
o file attributes: type, location, size, protection, time, date, user ID
e volatility: frequency of additions and deletions
e activity: percentage of records accessed during time frame
o directories: keep track of files (and are files themselves)
e create the illusion of compartments
e but are indexes to files which may be scattered
e entry per file: name, attributes, disk address, etc.




[VI] Files: Abstract Tata

e data (the file) and the operations on the file
e create: allocate storage, add to directory
e open: search directory
- establish logical pointer current-file-position
e write: data at the pointer
e read: data at the pointer
e reposition: the pointer (seek)
e delete: file entry in directory
e truncate: update length attribute in directory
e append: new data and update length attribute in directory
e rename: change name in directory
e close: disconnect logical access to file
e access methods:
e sequential: only increment pointer
e direct: set pointer for seek
e indexed: index of keys and associated direct pointers

[/I] Files: i avered Svsteiis
application programs

logical file system: symb;‘lic file name (directories)
file-organization module: Iogical-lt;v)lock addr — physical block addr
basic file system: reac‘i‘./write physical blocks
1/C control (device driver;): memory « disk system

devices

[“VI] Files: Fartitions - Tirectories on Tisk
directory directory
files partition A disk 2
disk 1 directory
files partition C
files partition B
disk 3

e partitions = minidisks = volumes
e virtual disks

[VI] Files: General Graph: Tirectory [

I:' directory

/ \ oo

‘text ’ mail | count book book mail | unhex| hyp ‘
L !
O O O
avi count unhex| hex
cyclic
acyclic O O O

e single-level: one directory shared by all users
e two-level: one directory per user

e tree-structured: long pathnames

e graph-structured: sharing




[vI] Files: CTontiguous AZllocation of Space

[VI] Files: Contiguous AZllocation

e simplest method is a contiguous set of blocks
e disk address of start (base) block and length (in blocks)
e sequential access is easy - read next block
e direct access (“seek”) is easy -

logical offset — physical base + offset
e how to find space for new file?

o first-fit: first hole that is big enough

e best-fit: smallest hole that is big enough
e external fragmentation

e blocks are available but not sequentially
e internal fragmentation

e preallocation of blocks is too large

e |left-over amount in last block

[I] Files: iinked Allocation

e solves external fragmentation: can use any block for any file
e solves ‘“preallocation” internal fragmentation
e good for sequential access: chase the pointer
e not effective for direct access
where is the nth block of the file?
e requires space for pointers
e if a pointer is bad, file is lost

count .

0 lE 1 & 5 \:‘ 3 \:\ directory
file start length

f coun

a0 s s 7IX T
mail 19 6
list 28 4

s[] o] 1] u[] ; s s

12[ ] 13[] 14% 15[X]

16X 17[ | 18] 19%1iI

200X 21X 220X 230X

240< 25 ] 26 ] 27 ]

lis

28‘j 200X 30[K] 31X

[VI] Files: Linked
0 \:‘ 1 2 \:\ 3 D directory
% file start end

4\:| 5\:‘ 6D 7D jeep |9 25

8] %‘ 1] mail

12[ ] 14 ] 15[ ]

17 ]| 18 ] 19 ]

200 | 21 ]| 22[] 23]

24] | 25@ 26 | 27 ]

28] | 29[ ] 30 | 31 ]




[VI] Files: Indexed Allocation [213] [VI] Files: Indexed Allocation
e contiguous: easy sequential and direct access but fragmentation
linked: no fragmentation but difficult direct access
y . . J . 0\:\ 1 2|:' 3D directory
e indexed: direct access and no fragmentation % file index block
bring all pointers into one location: the index block (IB) a[] s[] e[] 7[] jeep 19
e each file has its own IB
mail
e i-th entry in the IB points to the i-th block 8]
¢ suffers from wasted space (IB may not be full)
- 12[ ] 5
16
1
16& 10 block 19
25
-1
20[ ] -1
-1
24 ] 285X+ 26[ ] 27 ]
28] | 29 | 30 ] 31] ]

[vI] Files:

[VI] Files: i iarce an IS7?

e each file must have an IB - IB should be small

e some files are small - IB should be small mode

e some files are big - IB should be large owners
tlmestamps

e solution: multiple levels of smaller IBs size

block count

e some files are small - don’t need multiple levels
e solution: UNIX Index Block ]
e 1 direct block of pointers to data (good for small files) |

- . - . direct blocks @
e indirect blocks (i-nodes) for multiple levels o
[ J -
oot
[
single indirect __| °
double indirect __| 7
triple indirect __|
° data
[
[
| o)




[VI] Files: [inked Free-Space [ist

[VI] Files: Free-Sspace Manageient
e free-space list records all blocks that are free
e allocate blocks (create, append): search list and remove oX 1IX 25 3 free-space list head
e deallocate blocks (delete): add to list
e implementations: 4@ 6 7IX
e bit vector: bit=1 = block is free
e grouping
first block has n — 1 addresses of free blocks
and 1 address of the next group
e counting: blocks are often given up in contiguous sets
keep a list of pairs (first block, count) 16X
e linked list: add/delete blocks at head

[+/I] Files: Frotection - Zccess MMatrix [VII.A] Distributed Systemis: Introduction  [2
e collection of processors
domain \ object Fy F F3 printer e each processor has its own local memory
“:1 read read ' e processors communicate through communication lines
Ei read | execute print e processors do not share a clock
D, read/write read/write e distributed systems (DS) provide users with:
e resource sharing
e process in domain £; can read file Fy e computation speedup
e matrix is sparse e reliability
e access (column) list - each object has list of <domain, rights-set> e communication
process in domain 7; accesses Oj;: scan j's list for permission e network OS: users are aware of multiplicity of machines
e capability (row) list - each domain has list of <object, rights-set> e manually specify operations
process in domain £; possesses a capability to allow access e remote login: telnet cs.utexas.edu
list is a protected object and is accessed indirectly e remote file transfer: ftp cs.utexas.edu
e distributed <S: users are not aware




[VII.A] ©S: Advantages/isadvantages
e advantages over centralized systems

e economics, speed, inherent distribution, reliability, incremental
e advantages over isolated (personal) computers

e data sharing, device sharing, communication, flexibility
e disadvantages

e little software, network saturation, security

[VILA] DS
@)
U5 ™
— O
fully connected ring star tree

TTT?79

e basic cost: how expensive to link various sites in system?
e communication cost: how long does it take to send a message?
e reliability: if site fails, can remaining sites still communicate?

{S VS.
Local-Area Networks (LANS):
e small geographical area
e multiaccess bus (Ethernet), ring, star
e cables: 1 megabyte/sec
e optical networks: 1 gigabit/sec
e one or more gateways to other networks
¢ Wide-Area Networks (VVANSs):
e large geographical area (Internet)
e relatively slow (1200 bits/sec to 1 megabyte/sec)
e unreliable
e telephone lines, microwave links, and satellite channels
e communication processors

o |
MW
h-
I
el
WW
U”
r

e routers

[VIILA] ©=S: Namiing

e how does a process locate another host?
e domain name service (DNS)

e <host name, identifier>

® bob.cs.brown.edu
e request to name server edu for address of server for brown.edu
edu must be known address
e request to edu.brown for address for cs.brown.edu
e request to cs.edu.brown for address for bob.cs.brown.edu
= Internet address 128.148.31.100
e relies on caches for better performance
e name server is in “wait” state:

daemon name_server() {
while (1) {
receive(&name, &pid) ;
send(pid, lookup(name)) ;
}
}




¢

[VII.A] ©=5: Tircuit = g
e how do two processes communicate with each other?
e session s is allocated transmission rate rs bits/sec
e fixed path established between two sites
e each link guarantees portion rs (say by time multiplexing)
e if path cannot be found, then reject session
e like telephone switching
e which has equal session transmission rates
e very inefficient for data networks
e short bursts of high activity
e lengthy inactive periods

(

VII.A] ©s: Store-and-Forward itching
e each session is initiated without reserved allocation
no multiplexing of links - use full transmission rate

e links are fully utilized when there is traffic
packets are queued - waiting for transmission
decreases delay relative to circuit switching

e needs (feedback) control mechanism to reduce queueing delays
message switching:

e store-and-forward with arbitrary message sizes
e must be broken into packets
e packet switching: store-and-forward
virtual circuit routing: store-and-forward but on a fixed path
e uses full transmission rate of links
dynamic routing: store-and-forward but packet finds its own path

"
i ||

JIILA] ©=: CTontention [227
e several sites want to transmit simultaneously (bus/ring)
e CSIVIA: carrier sense with multiple access (bus)
e site must listen for a free link
e if a collision occurs, try again after a random amount of time
e good for lightly-loaded systems
e token passing: a token continually circulates around a ring
e site can send messages only when it possesses the token
e uniform performance
e message slots: fixed-length message slots circulate in the ring
e each slot can hold a fixed-sized message and control
e site must wait until an empty slot arrives
e sites must check control info for possible messages

(

Network odel

computer A computer B
user user

application layer - application layer
presentation layer - . presentation layer
session layer - . session layer
transport layer « - transport layer
network layer - . network layer
link layer - link layer H/W | Net
physical layer - physical layer

N N

‘ data network |

e use (7) layered approach to deal with complexity
e each layer “talks” with corresponding layer on another computer




[VII.A iavers
e physical: mechanical and electrial transmission of a bit stream

e data-link: transmission of frames or packets

e network: routing of packets

e transport: transmission of messages as packets, maintaining order
e session: implement sessions and protocols (say rlogin)

e presentation: resolve differences in format

e application: interact directly with the user

[ [
e users are unaware of the underlying structure or operations
e access remote resources in the same manner as local resources
e data migration: data is transferred to sites which require access
e transfer entire file or only those portions necessary
e partial computation migration:
e synchronous: remote procedure call (RPC) using a datagram
e asynchronous:
e message to start new process for designated task
e both return results
e process migration (full computation migration):
e load balancing to even the workload
e computation speedup via concurrency
e hardware or software preference
e data access

M)

[

e TCP/IP: Transmission Control Protocol/Internet Protocol
e fewer levels, more difficult, more efficient
e IP: transmission of datagrams, basic unit of information
e 1 CP: uses IP to transport a reliable stream between two processes
e establish and maintain a connection
e UDP: User Datagram Protocol
e uses IP to transfer packets, but adds error correction
e connection-less

eiriote Frocecure Lall

result = multiply(7,2); /*client*/
int multiply (x,y) { /*stub  */
sprintf(stri,"%d %d",x,y); /*pack *
general_transport(name_server ("multiply"),strl,&str2);
sscanf (str2,"%d",&result); /*unpack*/
return(result);
¥

void general_transport (server,strl,str2) {
send(server,stri);
receive(*str2,&server); /*block */
}
[ Fkrkckkdokkkdokkk  NETWORK kskokokokskokokkokokokoksk /
daemon multiply_transport () {
while (1) {
receive(&stril,&client); /*block */
multiply_server_stub(strl,&str2);
send(client,str2);

} o}
void multiply_server_stub (stril,str2) { /*stub  */
sscanf (str1,")d %d",&x,&y); /*unpackx*/
result = multiply(x,y);
sprintf (*str2,"%d",result); /*pack */

}

int multiply (x,y) { return(x*y); } /*serverx*/
Wy,




{Client and Server}

[VIL.A] Jetwork Files
computer A computer B
O 7 0 VA
\ home ~\ usr .\ bin [ etc [ man
lib - ~ man »\ local

e mount a remote directory
e tables of all mounts /etc/mtab also kept in kernel memory

client server

system-calls interface

VFS interface VFS interface

other types of UNIX 4.2 file NFS client NFS server UNIX 4.2 file
file systems systems systems
RPC RPC
( disk | l [ ( disk |

| network ‘

e inode — vnode

[VII.E] Sistributed Coordination: Introduction [2

e Mutual Exclusion: share a critical section
remember sempahores!
Resource Allocation: share a resource
remember Dining Philosophers!
Reading/"riting Registers: share a variable
Leader Election: agree on a leader
what if a token gets lost? need a root for a tree?
systems reboot?
¢ Common Knowledge: everyone knows that everyone knows ...
when can I be sure?
Consensus: everyone agrees on a value
what if processors lie (faulty)?
Distributed Minimum-y4¥eight Spanning Tree:
find tree concurrently with distributed information
see VISUAL CS (Distributed Algorithms)

ieiann’s Miutual Exclusion

i OKEN to guarantee mutual exclusion on ring network
e to stop processes after cycles around the ring:

At all < Extra code at ¢ = 1:
send(neighbor, TOKEN)
do forever {
cycles — cycles — 1

if cycles = 0 then send(neighbor,
STOP)

msg = receive()

/* critical section */

send(neighbor,msg)

if msg = STOP then goto EXIT
}

EXIT: destroy()




[VILE] L
N read 7N
(RP) ~——— (27, ~—
N read N write 7N
RP) ~—— (ay) ~—F—— (WP
R read -

(RP, ( zn)

e’ N

e one logical “shared” register by distributed local registers

e RP: reading process

e V' P: writing process

e logical register is only “regular” (not necessarily consistent)

p—
P

At register process z; € {1,...,n}:
do forever
message — receive()
if message = READ then send(reader, z)
else { /* message is the value to be written */
T + message
send(writer, DONE)
}
At reading process j € {n 4+ 1,...,2n}:
do forever
send(register, READ)
value — receive()
At writing process k = 2n + 1:
do forever
/* compute new value */
for i =1,...,n do send(i, value)
for : =1,...,n do message «— receive()

[VII.E] Coordination: [ eader Zlection

&iven: n processes on a ring, each with unique identifier
Problem: elect a leader

say to regenerate a token

or to be a root in a spanning tree

all processes must agree and know who the leader is

neighbor

. ‘|”

temp_id
next_temp_id
next_next_temp_id

i eaZer Election

e if received ID is larger, send it to the next node
e if received ID is smaller, ignore it
e if received ID is equal, process is the leader
because its ID traveled all the way around
hich process is elected leader? How should it be announced?

Local Variables:

1. temp_id < i, the temporary ID of the process
2. next_temp_id, the temporary ID of the next clockwise process
3. neighbor — i+ 1, the next counterclockwise process on the ring

At pi € {1,...,TL}:

send(neighbor, temp_id)

do forever
next_temp_id — receive()
if next_temp_id > temp_id then send(neighbor, next_temp_id)
if next_temp_id = temp_id then announce(LEADER)




[VII.2] Feterson’s i eader Election [24%]

e process sends its own temp ID to next counterclockwise neighbor
e process receives, sends, temp ID of next clockwise neighbor

e process compares the three IDs

if clockwise temp ID is largest, it replaces the temp ID

if clockwise temp ID is not largest, process goes to relay mode

if clockwise temp ID = own temp ID, receiver is leader

ACTIVE: RELAY:
do forever do forever
send(neighbor, temp_id) temp_id «— receive()
next_temp_id «— receive() send(neighbor, temp_id)
if next_temp_id = temp_id then
announce(LEADER)
send(neighbor, next_temp_id)
next_next_temp_id «— receive()
if next_temp_id > max(temp_id,
next_next_temp_id)
then temp_id — next_temp_id
else goto RELAY

[] Java i
° deS|gned SO programmers can learn quickly

e especially if they know C—-—-

e omits rarely used, poorly understood, confusing features of C—+—
e no operator overloading, multiple inheritance, or header files

e true & means no struct or union

e no pointers!!!

e automatically handles referencing/dereferencing of objects

e automatic garbage collection

e arrays and strings are real objects

e small: basic interpreter = 40Kb

e libraries and threads (microkernel) = 175 Kb

[X

Java is a

e simple,

e object-oriented,

e distributed,

e interpreted,

e robust,

e secure,

e architecture neutral,
e portable,

e high-performance,

e multithreaded,

e and dynamic language.

[] Java: Tbject Triented [2424]
e Clean definition of interfaces

e good encapsulation/information hiding

reusable software

focus on data and methods that manipulate data

rather than thinking strictly in terms of procedures

class is a collection of data and methods

data and methods describe state and behavior of objects
subclasses inherit from parent class

Java comes with extensive set of classes arranged as packages
e unlike C----, Java was designed to be ©C from the ground up
simple numeric, character, and boolean types are only exceptions

oy
‘}




<] Java: Distributed [

[

]

extensive library for easy 7T CP/IP protocols like HT TP and FTP
can access objects across the net via URL's
(Uniform Resource Locator)
as easy to open remote file as it is a local file
reliable stream Socket class for client-server model
can also do unreliable “atagrams messages

<] Java: Intervreted

[

compiler produces byte-codes rather than native machine code
javac myobj.java produces myobj.class

run the interpreter on any class with a “main”: java myobj
interpreter and run-time system: Java %irtual “iachine

run byte-codes on any machine that supports this virtual machine
no “link” phase: classes are loaded dynamically (incrementally)
compile-time info is stored in byte-codes for checks at load time

<] Java: Robust

[

strongly typed

emphasis on early checking for possible problems
eliminate situations that are error prone

C and C—+— are slack about procedure declarations
Java compiler can catch method invocation errors
interpreter verifies array and string boundaries

don't worry about corrupting memory

automatic garbage collection prevents memory leaks
exceptions make for easier error handling

later dynamic (runtime) checking

[] Java: Secure

Java is meant to be used in network environments
protection against viruses
authentication techniques are based on public-key encryption
security related to robustness
Java’'s memory allocation is main defense against malicious code
all memory references are by symbolic handles
delayed memory allocation/layout decisions =

sources don't provide hackers with key information
byte-code verfication
loaded classes in separate name space than local classes
prevents malicious applet from “spoofing” a built-in class
can disallow network access or access to specific hosts




[X] Java: Architecture MNeutral [242]
e byte-codes can run on any machine that supports the Java runtime
e developers can create just one version of their software

[X] Java: Fortatle [249]

e byte-codes can run on any machine that supports the Java runtime
e no implementation-dependent aspects of language specification

e int, float are the same everywhere

%] Java: : Perforiniance

e 20 times slower than C

e but fast for an interpreted language

e fine for interactive GUI applications

e byte-codes can be translated on the fly to native code
e byte-codes designed for “just in time” compilers

e runs nearly as fast as C or C—+—+

[X] Java: =tate Transistions

stop or run expires

Join RUNNABLE
suspend resume
sleep clock interrupt start
wait notify stop
[NOT RUNNABLE] [ NEW THREAD |}—+ DEAD
new
NULL
stop

e RUNNABLE = in ready queue <R on the CPU

¢ NOCT RUNNABLE = suspended state (wait for notify)
e vield, higher priority, time slice = stay RUNNABLE

[X] Java: Multithreaded [Z
e multiple things going on in a GUI-based network application

e Thread class makes it easy to start/stop lightweight processes
e synchronized methods allow in only one thread at a time

e stand-alone Java runtime environment has good performance

e running on Unix, YWindows, Mac is limited to underlying system

[] Java: Tvnas
e classes are loaded at runtime even from across the network
e consider a program that is handed an object

e C or C+-: cannot find out what class it belongs to

e Java: run-time can provide this information

e can trust a “cast” in Java, not in C or C+-+

[X] Java: Inheritance =xaiiple

import java.awt.Color; // package
public abstract class Primitive { // abstract=>cannot make an object instance

public static final int X=100; // class constant
public static final int Y=100;

private int x; // instance variable

private int y;

private String name; // String is class

protected Color color; // let subclasses have access

public Primitive(String name, int x, int y, Color color) { // comstructor

this.name = name; // refer to self
this.x = x;
this.y = y;
this.color = color;
}
public void setx(int x) {this.x = x; } // instance method

public void sety(int y) { this.y = y; }

public int getx() { return x; }

public int gety() { return y; }

public String getName() { return name; }

public Color getColor() { return color; }

public void chgAppearance() { color = color.brighter(); }




[X] Java: Inheritance =

import java.awt.Color;
public class Conic extends Primitive { // inheritance

private int a; // ax"2 + bxy + cy"2 + dx + ey + f = 0
private int b;
private int c;
private int d;
private int e;
private int f;

public Conic(String name, int x, int y, Color color,
int a, int b, int ¢, int d, int e, int f) {
super (name,x,y,color); // call constructor of parent
this.a = a;

this.b = b;
this.c = c;
this.d = d;
this.e = e;
this.f = £f;

[X] Java: Inheritance =x
class Geo {

public static void main(String args[]) { // entry point

Circle a = new Circle("a",10); // object instance of class

Circle b = new Circle("b",20); // another object

Color color;

// access class variable

System.out.println("Number of circles: "+Circle.num_circles);

// access instance method

System.out.println("Circ of a: "+a.circumference()+" Area of b: "+b.area());

// access public instance variable

System.out.println("Radius of a: "+4a.r);

// access instance method of grandparent

System.out.println("Location of a: "+a.getx()+","+a.gety());

// access instance method

System.out.println("Biggest area: "+a.bigger(b).area());

// access class method

System.out.println("Biggest area: "+Circle.bigger(a,b).area());

// access instance method of grandparent

System.out.println("Circle with biggest area: "+a.bigger(b).getName());

color = a.getColor();

System.out.println("Color of circle a: "+color.toString());

a.chgAppearance() ; // make it darker

color = a.getColor();

System.out.println("Color of circle a: "+color.toString());

}}

sle

[X] Java: Inheritance = ple
public class Circle extends Conic { // inheritance
public static final double PI=3.14159; // class constant
public static int num_circles=0; // class variable
public int r; // instance variable
public Circle(String name, int x, int y, Color color, int r) {
super (name,x,y,color,1,0,1,0,0,-r*r); // call constructor of parent
num_circles++; // count number of objects
this.r = r;
}
public Circle(String name, int r) { // multiple constructors
this(name,Primitive.X,Primitive.Y,Color.red,r);
}

public Circle(int r) { this("",r); }
public double circumference() { return 2#PI*r; }
public double area() { return PI*r*r; }
public Circle bigger(Circle c) { // instance method
if (c.r > this.r) return c; else return this; // return myself
}
public static Circle bigger(Circle a, Circle b) { // class method
if (a.r > b.r) return a; else return b;
}
public void chgAppearance() {
color = color.darker();
}
}

// overriding method
// access protected variable

class PhilDemo {
public static void main(String args[]) {
String s = new String("A");
Integer forkl = new Integer(1); Integer fork2 = new Integer(2);
if (args.length > 0) s = args[0];
if (s.equals("A™)) {
new PhilA("Philosopher One",4).start();
new PhilA("Philosopher Two",4).start();
} else
if (s.equals("B")) {
new PhilB("Philosopher One",4,forkl,fork2).start();
new PhilB("Philosopher Two",4,forkil,fork2).start();
} else
if (s.equals("C")) {
PhilC phill = new PhilC("Philosopher One",4);
PhilC phil2 = new PhilC("Philosopher Two",4);
phill.setOther(phil2); phil2.setOther(phill);
phill.start(); phil2.start();
Thread me = Thread.currentThread(); me.yield();
synchronized (phill)phill.notify();
} else
if (s.equals("D")) {
new PhilD("Philosopher One",4,6117,6118).start();
new PhilD("Philosopher Two",4,6118,6117).start();
}r3}




class PhilA extends Thread { // inheritance
private int steps;
public PhilA (String name, int steps) { // constructor

super (name) ; // let Thread class save the name
this.steps = steps;
}
public void run() { // start executes the run method
while (steps > 0) {
eat();
steps——;
¥
}
static synchronized void eat() { // entire method is critical section
print();
public static void print() { // static=>can use without an object

Thread me = Thread.currentThread();

System.out.println(me.getName()+" start eating");

me.yield(); // try to give up the processor
System.out.println(me.getName()+" stop eating");

me.yield();

[] Java: i
class PhilC extends Thread {

private int steps;

Thread other;

public PhilC (String name, int steps) {

super (name) ;
this.steps = steps;

}

public void setOther(Thread other) { // remember the other philosopher
this.other = other;

}

public void run() {
while (steps > 0) {
if (getName().equals("Philosopher One™))
eat1();
else
eat2(); // make 2 versions, both synchronized
steps-—;
¥
}
synchronized void eat1() { // must be synchronized to use wait
try this.wait(); catch(InterruptedException e) System.err.println(e);
PhilA.print();
synchronized(other)other.notify();
}

o
9]
S

class PhilB extends Thread {
private int steps;
private Integer forkil;
private Integer fork2;
public PhilB (String name, int steps, Integer forki, Integer fork2) {
super (name) ;
this.steps = steps;
this.forkl = forkil;
this.fork2 = fork2;
}
public void run() {
while (steps > 0) {
eat();
steps——;

// any object will do

}
}
void eat() {
synchronized(fork1) {
synchronized (fork2) {
PhilA.print();
}

// critical section based on object

}
}
}

}

import java.net.x;
class PhilD extends Thread {
int steps;
byte[] inbuf = new byte[1]; byte[] outbuf = new byte[1];
DatagramPacket inpacket; DatagramPacket outpacket;
DatagramSocket mysocket; DatagramSocket yoursocket;
public PhilD(String name, int steps, int myport, int yourport) {
super (name); this.steps = steps;
try { mysocket=new DatagramSocket(myport); yoursocket=new DatagramSocket();
inpacket=new DatagramPacket (inbuf,inbuf.length);
outpacket=new DatagramPacket(outbuf,outbuf.length,
InetAddress.getLocalHost () ,yourport) ;
} catch (Exception e) System.err.println(e);
}
public void run() {
if (getName().equals("Philosopher Two™))
try yoursocket.send(outpacket); catch (Exception e);
while (steps > 0) { eat(); steps--; }
}
void eat() {
try { mysocket.receive(inpacket);
PhilA.print();
yoursocket.send(outpacket) ;
} catch (Exception e) System.err.println(e);

} 3}




[X] Java: Excestions

[X] Java: Excestions

class MyException extends Exception {
public MyException() { super(); }
public MyException(String s) { super(s); }

class MyOtherException extends Exception {

public MyOtherException() { super(); }

public MyOtherException(String s) { super(s); }
}
class MySubException extends MyException {

public MySubException() { super(); }

public MySubException(String s) { super(s); }

public class throwtest {
public static void main(String argv[]) { int i;
try { i = Integer.parselInt(argv[0]); }
catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Must specify an argument");
return;
}
catch (NumberFormatException e) {
System.out.println("Must specify an integer argument");
return;
}
a(i);
}}

public static void a(int i){
try b(i);
catch (MyException e) {
if (e instanceof MySubException)
System.out.print ("MySubException: ");
else
System.out.print("MyException: ");
System.out.println(e.getMessage());
System.out.println("Handled at point 1");
¥
}
public static void b(int i) throws MyException {
int result;
try {
System.out.print ("i="+i+" ");
result = c(i);
System.out.println("c(i)="+result);
}
catch (MyOtherException e) {
System.out.println("MyOtherException: "+e.getMessage());
System.out.println("Handled at point 2");
¥
}

[X] Java: Excestions

public static int c(int i) throws MyException, MyOtherException {

switch (1) {
case 0 : // processing resumes at point 1 above
throw new MyException("input too low");
case 1 : // processing resumes at point 1 above
throw new MySubException("input still too low");
case 99: // input resumes at point 2 above
throw new MyOtherException("input too high");
default: return i*i;
¥
}

g
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Layers:
e user programs

o file system
e intermachine communication

e device manager and device drivers

e real-time clock manager

e interprocess communication
e process coordination
e process manager
e memory manager
e hardware

tten in C and runs on PC, Mac, Sun, LSI-11, etc.




A
VCS based on XINU
e VS has all the same states plus READING and YWRITING

e VS checks for sleeping processes with each reschedule

e VOS has almost all of the same system calls

e VOS has similar process table

e VS has the same queues

e VS has no memory management, clock, device drivers, file system
e VOS has no interrupts

e VS has only one process eligible to run at a time

e VOS runs on top of UNIX

e XINU “is" the operating system

e XINU is PRIZ scheduling but VS also has SJF

e VOS has a GUI

e display state transitions

e provide complete environment for running demo code

KI] X i1 Initialization

Initialization is the final step in design

e design the ‘steady” state first

e then design the “transient”

e typical of “function-oriented” systems

e but “object-oriented” systems have constructors
e initialization is easier because of hidden data

A : Frocesses

Processes are referenced by their process id
pid acts as an index of the saved state information in proctab
highest priority process eligible for CPU service is executing
among processes with equal priority, scheduling is round-robin
current process does not appear on the ready list, but as currpid
resched can only switch context from one process to another
Null process just continues to call resched

states: current, ready, receiving, sleeping, suspended, waiting

[X1] *

e processes
create, getpid, Kill, resume, sleep, suspend, chprio, getprio

e messages

receive, send

e ports

pcount, pcreate, pdelete, preceive, preset, psend

e semaphores

scount, screate, sdelete, signal, sreset, wait

e memory

getmem, getstk

e devices

close, control, getc, getdev, init, open, putc, read, seek, write




[X1] X : \
e getmem obtains memory from the heap
e finds the first block large enough for request
e create allocates a stack for a process
e user programs can also use the heap
e freemem returns memory to the heap
e blocks on the free list are ordered by increasing address
e scan and find the proper location
e adjacent free blocks are grouped into a larger block
e user programs must return memory to the heap

[XI] * i1 Interrupts

e interrupts generated by clock, device controllers
e hardware calls interrupt handler when it finds an interrupt pending
e handler uses assembly language “dispatcher”

e saves/restores registers

e indexes into the interrupt vector to get specific high-level routine
e interrupts disabled when dispatcher calls high-level routine

e high-level routine must keep disabled until changes complete

e system calls, like resume, ‘“disable” and then “restore” interrupts
e do not want other processes changing process table, etc.

e but disable time must be short so devices are CK

[X1] X : Interrupts [27%

e process P is running when an interrupt occurs

e hardware uses P's stack to save registers

e P continues to run the interrupt dispatcher

e interrupts disabled by dispatcher

e high-level routine may resched process <

e &3 might pick up from the end of a system call: enable

e new interrupt comes in but goes onto <'s stack

e when P runs again, the context switch will turn off interrupts

e only one interrupt per process is stacked

e rescheduling during interrupt processing is safe provided
e routines leave global data in valid state before rescheduling
e no procedure enables interrupts unless it disabled them

[XI] = Real-Time Clock [272]
e time-of-day clock: pulses and counts the pulses
e real-time clock: pulses and generates interrupts
e CPU reads the time-of-day clock if it wants current date/time
e real-time clock forces CPU to process an interrupt with each pulse
e hardware gives highest priority to clock interrupts
e used for preemption to prevent infinite loops
e used for round robin scheduling among equal priority processes
e resched sets “preempt” to SUANTUM
e JUANTUM is the “granularity of preemption”
e clock interrupt routine decrements “preempt”
e if zero, call resched




it Eleeping Frocesses ,

e real-time clock used for timed delay for sleeping processes
e cannot afford to search through long list of sleeping processes
e all processes kept on a delta list

the first process is the one with the least delay

e all other processes have deltas based on the preceding process

clock just decrements the first process until its zero

new sleepers inserted at proper place with proper delta

X U Half TTY Cutput TDevice Triver [275]
e output function acts as a producer of chars
ttyputc(devptr, ch)

P

struct tty *iptr = &ttyl[devptr->dvminor];
e wait for space in the buffer (waiting for consumer)
wait (iptr->osem) ;
e put the character into the buffer
iptr->obuff [iptr->ohead++] = ch;
++iptr->ocnt;
if (iptr->ohead >= OBUFLEN) iptr->ohead = 0;
e send a message to tty lower-half process (which may be blocked)

it Device I/C
e hide messy details in device drivers
access must be fair and safe to shared devices
provide uniform interface to all devices
asynchronous I/ allows processes to continue
e overlap computation and 1/C
synchronous 1/ blocks processes until I/< completed
e easier and works in most cases
application calls high-level routine like putc with device descriptor
putc(int descrp, char ch)
high-level routine indexes into device switch table using descriptor
devptr = &devtabldescrpl;
e device table gives real device address and driver routine
e high-level routine calls the upper-half device driver

sendn (iptr->oprocnum, TMSGOK) ;

return( (*devptr->dvputc) (devptr,ch) );

[XI] iower-Half TTY Cutout Sevice Triver [276]
e output function acts as a consumer of chars
PROCESS ttyoproc()
e infinite loop with a receive
for (;3;)
receive();
e take the data out of the buffer
ch = iptr->obuff[iptr->otail++];

--iptr->ocnt;
if (iptr->otail >= OBUFLEN) iptr->otail = 0;
e signal the producer (upper-half) that space is available

signal (iptr->osem);




: Zutsut VWatersarks
very popular and fundamental technique
producer runs faster and/or has higher priority than consumer
application usually produces many chars at once = buffer full
with each signal from consumer, producer puts one more char
forces a reschedule with EVERY character: too slow
if the buffer fills past the high watermark

e consumer does not signal, just counts
if the buffer empties below the low watermark

e consumer makes-up for all of the signals
e allows the producer to run awhile before the buffer fills again

o |
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upper-half input function acts as a consumer of chars
char ttygetc(devptr)
e |lower-half input function acts as a producer of chars
PROCESS ttyiproc()

XI] Upper-Half Sisk Cutput Tevice Triver [2
e upper-half output function
dswrite(devptr, buff, block)
e enqueues the request and returns
dskenq(drptr, devptr->dvioblk);
e enqueue forces disk arm to sweep low to high and back again

pl

vWhen adding a request for block B to the existing list of requests, schedule it to
be performed between requests for i and i+1 if the disk arm will pass over block
B on its way from i to i4+1. If no such pair i and i+1 exist, add the new request

to the end of the list.

e FIFC order must be preserved for requests on the same block
e if enqueue on empty list, then send message to lower-half:

dskenq(drptr, dsptr) {
if (dsptr->dreqlst == DRNULL) {
dsptr->dreqlst = drptr; /* enqueue */
drptr->drnext = DRNULL;
sendn(dsptr->dsprocnum) ;
} else OPTIMIZE ALL READS, WRITES, SEEKS }

[1I] iower-Half Tisk Tevice Triver
e lower-half process handles all requests
PROCESS dsinter(dsptr,dsknum) {
for (3) {
drptr = dsptr->dreqlst;

if (drptr == DRNUILL) receive(); /* if empty, receive */
dsptr->dreqlst = drptr->drnext; /* dequeue sequentially */
switch (drptr->drop) {
case DREAD: dread(drptr->drbuff,dsknum,drptr->drdba);
resume (drptr->drpid) ;
break;
case DWRITE:dwrite(drptr->drbuff,dsknum,drptr->drdba) ;
case DSYNC, DSEEK,




XI] Sisk Input Tevice Trivers

e upper-half input function
dsread(devptr, buff, block) {
struct dreq *drptr;
drptr->drbuff = buff;
drptr->drdba = block;
drptr->drop = DREAD;
drptr->drpid = currpid;
dskenq(drptr, devptr->dvioblk);
suspend (currpid) ;
}
e lower-half disinter function reads and resumes upper-half
dread(drptr->drbuff,dsknum,drptr->drdba) ;
resume (drptr->drpid) ;

X Systern Tesiagn [2
e no real design before implementation

e first development in 1969 at Bell Labs by Thompson and Ritchie
e Ritchie had worked on MULTICS

e UNIX is a pun on MULTICS

e file system and shell are similar

e implemented in C

e designed by programmers for programmers

e designed to be a time-sharing system

e not much layering (see earlier slide)

e shell programs combine ordinary programs

e pipes for redirection of input/output: % myprog <indata >outdata

<X Frocesses

e process is a program in execution

e new process created by fork

e parent can create a child

e child runs the same program as parent

e typically, child will execve a new program

e parent waits for a child’'s exit

e if a parent exits, then the child is a zombie

e fork allows a pipe between parent and child (see IPC)

e read from empty pipe or write to full pipe: block

e signal handles exceptional conditions (keyboard interrupt)

e process can ignore a signal or have a signal handler routine
e signals can be used to start and stop subprocesses on demand

X1 Frocess —ontrol Elock

e called process structure

e process ID, priority, etc.

e array of PCBs defined at system linking time

e ready queue is doubly-linked list through the PCBs

e pointers to parent, youngest living child, other relatives
e normal execution is in user mode

e system calls switch to system mode

e system mode uses kernel stack for that process

™,




[XI1] ¢ X1 Scheduling

e designed to benefit interactive processes

e small CPU time slices using a priority algorithm

e larger numbers indicate lower priority

e processes doing disk I/ are less than ‘“pzero”

e ordinary user processes have positive priorities

e less likely to run than any system process

e user processes can set precedence over one another using nice
e high CPU usage = lower priority (more positive)

e process aging prevents starvation

e time-slice every 0.1 sec and recompute priorities every 1 second
e round-robin uses timeout which tells clock to interrupt

e reschedule and then set another timeout

e priority recomputation also uses timeout

<: =vents

relinquish CPU because of 1/ or time slice expired

or sleep waiting for some event

argument is address of kernel data structure for that specific event
system calls wakeup on all sleeping processes for that event
wait for disk I/< to complete (sleep on address of buffer header)
race condition:

process decides to sleep (based on, say, flag)

e event occurs

process calls sleep (but event will never occur)

e raise hardware processor priority for this critical section

no interrupts and process can run until sleeping

<] fanagement [287]

e carly system just swapped out processes if not enough memory
e PIDO=scheduler process (swapper) wakes up every 4 secs
e swap out a process if:
e idle
e in main memory a long time
e large
e Old
e swap in a process if:
e swapped out a long time
e small
e some UNIX systems still do this
e Berkeley UNIX uses demand paging and secondarily swapping

virtual memory

swapping kept to minimum because more jobs in memory
only parts of each process in memory

list of free frames

modification of second chance (clock) algorithm
memory is swept linearly and repeatedly by software clock hand
if frame is already free or in use (say for 1/C), skip
otherwise, go to page-table entry for frame

if invalid, put frame on free list

otherwise, mark as invalid but reclaimable

clock hand implemented by pagedaemon

runs only if free frames falls below threshold

if hardware supports ref bit, then use it

one pass of the clock turns bits off

second pass checks bit and puts onto free list




[XII] UNIX: File System:

e file is a sequence of bytes

e files organized by directories

file data linked by inodes (see earlier slide)

system calls use a file descriptor as an argument

e kernel indexes into table of open files for current process
each entry points to a file structure

each file structure points to an inode

[

e general device driver code
e specific device driver code for each device
e block devices

e disks and tapes

e array of entry points for drivers

e use a block buffer cache for block 1/C

e Or use a queue of pending transfers for raw device interfaces
e character devices

e terminals, line printers, etc.

e array of entry points for drivers

e C-lists are small blocks of characters
write enqueues onto the list for the device
interrupts cause dequeueing
input is also interrupt driven

[XII] UNIX: IFC

e not one of the strong points of UNIX
e pipe, shared files, messages, shared memory
sockets
e stream: reliable and sequenced stream
e datagram: unreliable and unsequenced messages
socket creates a socket and returns descriptor
descriptor indexes into array of open ‘“files”
bind assigns a name to a socket
e client-server model
e server creates socket and binds to well-known address
e client uses connect on well-known address
e server listens to say that it is ready for connections
e server accepts individual connection
e server usually forks a process to talk with client
e server goes back to listening
e server subprocess and client do read and write

[XIII] "iach: History
e CTSS - multiprogramming and timesharing (1962)
e MULTICS - virtual memory (1965)
e a process
e large and complex - all things to all people
e command line interpreter
e UNIX - a pun on MULTICS (1969)
e stripped-down version
o "C"
Rochester RIG - message passing over a network (1976)
e CMU Unix - port capabilities as object references (1979)
Accent - integration of memory and IP< (1985)
e Mach - designed for multiprocessors (1989)
e incorporated recent innovations
e a few simple/powerful abstractions (and they interoperate)
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XII] "Mach:
UNIX good points:
multiprogrammed
easy portability to wide class of uniprocessors
simple programmer interface to system facilities
e extensive library
e pipes
UNIX bad points:
e not intended for multiprocessors
e kernel became repository for redundant/competing abstractions
e for example - IPC:
e sockets, streams, pipe
e shared files, system V messages, shared memory

[XIII] *“ach: Structure and Emulation
user process
NS OSF/1 Sys V.4 N
0S/2 user space
softwa're 4.3 BSD DB
emulation
layer
microkernel microkernel space
tasks and threads IPC virtual memory scheduling

e many ©OS run on top of Mach
e BSD provides the user interface/programming environment

XIII] Mach: Easic Goals

e simplicity: 5 powerful user abstractions which interoperate
integrated memory management and IP<
extensibility:
kernel functions may be efficiently exported to user state
leaves just a microkernel
compatibility: UNIX programs (binaries) fully supported
multiprocessor systems - even heterogenous
large and different types of memories
e Uniform Memory Access (UMA)
¢ Non-Uniform Memory Access (NUMA)
e No Remote Memory Access (NCRMA)
transparent access to different types of networks
e LANs and vWANs
e tightly coupled multiprocessors

[>1I1] “iach: =mulation in Mach

user process emulation library UNIX server

7 3. RPC to UNIX server

)\ UNIX binary

1. UNIX binary traps to the kernel to make a system call

2. trap is redirected to emulation library (part of user process)

e Mach kernel acts as a “trampoline”




[XIII] "iach: Pri Abstractions [2

XINI] ™Mach: Frimitive Abstractions

e task: execution environment
provides virtual address space
e provides protected access to system resources via ports
e contains one or more threads
e it is not a process: computationally passive
e thread: unit of computation (execution)
e must run in the context of a task
e task provides address space
e all threads in a task share ports, memory, etc.
process = task -+ thread
minimal state information = lightweight process

e ports: communication channel

e send/receive messages on ports

e kernel maintains capability list of rights to send/receive

e port set is a group of ports sharing a common message queue

e thread can receive on a port set - service multiple ports

e messages: basic method of communication between threads

e “typed” (self-describing) data - can be 4GB

e in-line or out-of-line (pointer) data

e port rights are passed in messages (the only way)
e memory objects: storage unit

e tasks access objects by using ports!

e map all or part of object into address space

e object may be managed by external memory manager
examples: files, pipe

Aeriory and IFC [2

[<I] Mach: EBlend

[XI] = Zbstractions
task
text region
threads
-—Ppc C) <—— message
4 L
data region O:— [ port set
Ly ,v’f
|
memory object /
secondary storage

e Memory Management:
e memory object represented by port
e IPC messages are sent to port (e.g. pagein, pageout)
e memory objects may easily reside on remote systems
e IPC:
e try to pass messages by moving pointers to shared memory
e try to avoid, or at least delay, copying
e let virtual memory management do the copying




XIII] Frocess Management - Tasks [2
e system calls to kernel: messages on process port
e create: parent task creates children tasks
e children inherit all or selected regions of parent’'s memory
e shared or copied
e priority: for current or future threads
e assign: (set of) processor for new threads
e suspend: all threads in task
e resume: all threads in task
e terminate: all threads in task

XII] "Wach: Frocess Vianageiient -

hreads [3

e create: give function to execute and its parameters

e suspend: one thread but not the task

resume: one thread but task may still be suspended
all threads share the process port and other ports
each thread has its own thread port say to terminate
all threads share the address space of the task

= need synchronization

[XIII] &4
e mutex_lock(mutex): a wait on mutex but with a spinlock
e mutex_unlock(mutex): a signal
e condition variables:
implement critical sections without busy waiting
¢ condition wait(condition variable,mutex variable):
unlocks mutex variable
blocks for a condition_signal(condition variable)
e condition _signal(condition variable):
sets condition variable to true and unblocks (all) waiting threads
condition may not hold when wait returns
= need a loop for wait

[

XIII] Froducer-<Consuiier Svnchronization

INITIALIZATION:

int buffer [MAXBUF];
int nonempty = FALSE;
mutex_alloc(mutex,1);

int buf_ptr =
int nonfull =

void add_buffer(int item) {

}

buf_ptr++;
buffer[buf_ptr] = item;
empty = FALSE;

if (buf_ptr == MAXBUF-1) full = TRUE;

PRODUCER :
while (1) {

}

nextp = produce_item();
mutex_lock(mutex);
while (full)

condition_wait (nonfull,mutex);
add_buffer (nextp) ;
condition_signal(nonempty) ;
mutex_unlock(mutex) ;

_1;
TRUE;

condition_alloc(nonempty,nonfull);

int rem_buffer() {

int item = buffer[buf_ptr];
buf_ptr--;
full = FALSE;
if (buf_ptr==-1) empty=TRUE;
return(item);

}

CONSUMER :

while (1) {

mutex_lock(mutex) ;
while (empty)

condition_wait(nonempty,mutex) ;

nextc = rem_buffer();
condition_signal(nonfull);
mutex_unlock(mutex) ;
consume_item(nextc);

}

TERMINATION: mutex_free(mutex); condition_free(nonempty,nonfull);




XII] Mach: CFU Scheduling
e only threads are scheduled - no knowledge of task is needed
e CPUs and threads assigned to processor sets (independently)
= threads that need computing power and CPUs at disposal
e thread has priority:
e base priority set by thread (within a limit)
e current priority = base priority + f(recent CPU usage)
e 32 global run queues for each processor set: one for each priority
e lock the global run queues
e find the highest priority thread (use hints)
e 1 “highest-priority” local run queue for “CPU" threads: I/C devices
e thread is given one quantum to run:
e check queues again; if empty or low priorities, go again
e with each tick: give thread a lower priority
e quantum is constant across a processor set
e quantum increases as CPUs go up - or threads go down

[_':‘E‘illl] Mach: Forts
e bounded queue within the kernel
e capability: send or receive ‘“right”

e deallocate: revocation of all rights

only one receiver for each port (but must have right)
multiple senders for each port (but must have right)
allocate: new port (and get the rights)

creator can give out rights in messages

if receive right sent in a message, sender loses the right
task allocates ports to the objects that it owns

e port sets: can only have receive rights

[XIII] *ach: Forts and Capabilities

A /task B
H H<— thread H

RECEIVE right
\ kernel

user

SEND right

capability list for A capability list for B

[XI1] Mach: Network

‘essaces

machine A

)

proxy

port X

machine B

s

network

NetMsgServer (NMS) is in user space

R sends S a message with SEND right: NMS creates proxy X

S sends R a message via proxy X: NMS delivers to port X
networkwide name server: allows tasks to register ports for lookup




[XIII] "iach: iviessaces
o fixed-length header and variable number of typed data objects
e data
e port rights
e pointers to out-of-line data
e send message
e SEND_TTViECUT: sending data too fast
e SEND_NCTIFY: if cannot be sent now, notify when CK
e receive message
e RCV_TIVECUT: block for only so long
e RCV_NC _SENDERS: return if no senders

]

, Jianagemient [2
e object-oriented: message to port associated with memory object
page fault: message to the object’s port
e user-level memory managers instead of kernel
e external pager
e task may not have manager for a region
e (not on secondary storage)
e manager may fail to reduce resident pages when asked
use Mach's default memory manager
e FIFC with ‘“'second chance”
secondary storage: just like any other object
physical memory: cache onto memory objects

[XIII] ach: Viessaces - Cut-of-iLine Tata [3

e pointer would be invalid in receiver’'s address space
e COpy-on-write:
e put the virtual memory map into the receiver’s space
e much faster than copying the data itself
e if receiver only reads - CK
e if receiver writes to a page - protection fault
e distinction: read-only vs. copy-on-write
e make copy of just the page, map it to receiver's space

virtual memory

0
1
2 RW
RW 3
sender’s map - 4
5
6 RO
7

receiver's map

[X11] ™

e 32-bits = 4GB
e 1K page size = 4 million page table entries
e Mach’s virtual memory: sparse
e allocate region of virtual memory
¢ specify base VM address and size (say 50MB)
e used for file objects, large messages
e regions can be shared/inherited with other tasks
e deallocate region
e many holes of unallocated VM space
e page table: not the regular kind
e entries for only currently allocated regions
e cannot simply index into the table
e check for page in valid region
e address map




user entry machine X machine Y
address .
space previous entry
task A task B
next entry
head tail address space
start/end ol
ault
entry inheritance

l:‘ I_:-‘ ‘ protection
object

kernel ' ' kernel
offset therein \\ //
Dsm

shared page is readable: may be replicated on multiple machines
shared page is writable: only one copy

e DSM knows which machines have the page

reader writes to the page: DSM sends messages to kernel

upon acknowledgement: single writer is given permission

cached pages
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