Remote Sensing of the Radiative and Microphysical Properties of Cirrus Clouds during TC4 with the MODIS Airborne Simulator

Michael D. King
EOS Senior Project Scientist
NASA Goddard Space Flight Center

- Provide the MODIS Airborne Simulator for the NASA ER-2 aircraft
 - Multispectral imagery from 0.47 to 14.3 µm
 ✓ Serves as customized ‘MODIS’ sensor for support of other instruments onboard the aircraft
- MAS retrievals
 - Cloud optical properties during the daytime
 ✓ Cloud thermodynamic phase, cloud optical thickness, effective radius
 ✓ Estimate of multilayer clouds
 - Cloud top properties both day and night
 ✓ Cloud top pressure, temperature, and effective emissivity
- MODIS retrievals
 - Provide cloud properties from MODIS to compare with MAS retrievals
- Validation and intercomparisons
 - Cloud thermodynamic phase, cloud top pressure, and multilayer clouds (CALIPSO)
NASA ER-2 Aircraft
TC⁴ Configuration

- Cloud Physics Lidar (CPL)
- Cloud Radar System (CRS)
- ER-2 Doppler Radar (EDOP)
- Q-bay & E-bay: Advanced Microwave Precipitation Radiometer (AMPR), SSFR, & Blackbody IR
- Solar Spectral Flux Radiometer (SSFR)
- Conical Scanning Sub-mm Imaging Radiometer (CoSSIR)
- MODIS Airborne Simulator (MAS)
- Scanning HIS
MODIS Airborne Simulator

- **Platform**
 - ER-2
 - 20 km (nominal)

- **Sensor Characteristics**
 - 50 spectral bands ranging from 0.47 to 14.3 μm
 - Scan $\pm 43^\circ$
 - Swath width of ~40 km
 - Instantaneous field-of-view 2.5 mrad
 - 50 m at nadir
 - 16 bits per channel
 - 1.72 GB hr$^{-1}$
 - 716 pixels in scan line

- **Calibration**
 - Integrating sphere on ground
 - Two on-board temperature controlled blackbodies
MAS Cloud Optical & Microphysical Properties
(M. D. King, S. Platnick et al. – NASA GSFC)

- **Pixel-level cloud product during **daytime at 50 m
 - Daytime defined as $\theta_0 < 81.4^\circ$ to be consistent with cloud mask

- **Critical input**
 - Cloud mask: to retrieve or not to retrieve?
 - Cloud thermodynamic phase: liquid water or ice libraries?
 - Continuous spectra in 1.6 and 2.1 μm region permits multiple algorithms to be used to test cloud thermodynamic phase

- **Atmospheric correction**
 - Requires cloud top pressure
 - MODIS CO$_2$ slicing algorithm recently ported to MAS processing
 - Ancillary information regarding atmospheric moisture & temperature (e.g., NCEP)

- **Surface albedo** for land
 - Uses spatially filled surface albedo product derived from MODIS Collection 4
Cloud Optical & Microphysical Retrievals

Retrieval space examples

Liquid water cloud
Sea ice surface

Ice cloud
Sea ice surface

Based on Nakajima and King (1990) algorithm
Cloud Retrievals in FIRE ACE
July 12-27, 2001

- Cloud Mask
- Thermodynamic phase
 - Liquid water vs ice
- Cloud top altitude
 - not shown
- Optical thickness
- Effective radius
Central America Surface Albedo from MODIS
July 12-27, 2001
Terra and Aqua Goals & Objectives

- Provide measurements of the effects of clouds, aerosols, and greenhouse gases on the Earth’s total energy balance
 - Cloud mask and determination of the presence of clouds
 - Cloud top properties (height/pressure, temperature)
 - Cloud optical and microphysical properties
 ✓ Liquid water vs ice phase
 ✓ Cloud optical thickness, effective radius, and integrated water path
Aqua’s Orbit

- Altitude of 705 km
- Near-polar, sun-synchronous, orbiting the Earth every 98.8 minutes, crossing the equator going north at 1:30 p.m. and going south at 1:30 a.m.
Aqua/MODIS True Color and Cloud Top Pressure
(W. P. Menzel, R. A. Frey – University of Wisconsin)

True Color Composite (0.65, 0.56, 0.47)

Cloud Top Pressure (hPa)

July 18, 2003
Cloud Optical Thickness and Effective Radius
(M. D. King, S. Platnick – NASA GSFC)

Cloud Optical Thickness

Cloud Effective Radius (µm)

Ice Clouds

Water Clouds

Ice Clouds

Water Clouds

July 18, 2003
MAS Derived Products
(M. D. King, S. Platnick et al. – NASA GSFC)

- Imagery of clouds and surface properties in support of other investigators
 - High spatial resolution with a swath width of approximately 40 km
- Pixel-level cloud product during **daytime at 50 m**
 - Cloud mask
 - Cloud thermodynamic phase
 - Indication of single layer or multilayer clouds
 - Cloud top pressure and temperature
 - Cloud optical thickness, effective radius, and integrated water path
Satellite Validation Goals

- Provide high resolution cloud retrievals to enable examination of subpixel cloud retrievals from MODIS
- Compare cloud top height and multilayer cloud detection with CALIPSO
 - Multilayer cloud detection algorithm during daytime only
- Intercompare thermodynamic phase determination from MAS and MODIS with
 - CALIPSO and POLDER during the daytime
 - CPL during daytime on any flight, including those coordinated with Terra
- Intercompare cloud top altitude from MAS and MODIS with OMI’s cloud top height algorithms during the daytime
Science Goals and Satellite Coordination

- Establish confidence in thin cirrus and multilayer cloud detection from MODIS during the **daytime**
 - Intercomparisons with MAS and CPL on ER-2
 - Intercomparisons with POLDER on PARASOL and CALIOP on CALIPSO

- Establish accuracy of cloud top altitude algorithm
 - Compare MAS and MODIS retrievals with CALIOP, CPL, and OMI

- Satellite coordination
 - Aqua, CALIPSO, CloudSat, and Aura/OMI during the **daytime**
 - Terra (MODIS and MISR) during the **daytime**

- Flights at night are of far less value for the objectives of this investigation
NASA ER-2 High Altitude Research Aircraft