Aircraft Measurements of H$_2$O(v), N$_2$O, CH$_4$, and CO in support of the Second SAGE III Ozone Loss Validation Experiment

Glenn S. Diskin, Glen W. Sachse
NASA Langley Research Center

James R. Podolske
NASA Ames Research Center

Thomas A. Slate, Mario Rana
Swales Aerospace

SOLVE-2 Science Team Meeting
NASA Dryden Flight Research Facility

December 11, 2002
Outline of Presentation

• Brief description of DLH and DACOM instruments
• New improvements for SOLVE-2
• Summary of data products, comparisons from SOLVE
• SOLVE objectives supported
DLH: the NASA Langley / Ames Diode Laser Hygrometer

- Tunable diode laser hygrometer operating in the 1.4 μm NIR spectral region
- Wavelength modulation at 4 kHz; 2F detection
- Line-locked to absorption line in low-pressure reference cell
- Uses one of two absorption lines, depending on conditions
- Double-pass external path configuration
 - “mirror” is panel of retroreflecting roadsign material, mounted on the outboard engine
 - sample volume is outside of aircraft boundary layer
 - no inlet effects, such as condensation, evaporation, interaction with walls
 - long path-length (28.5 m on DC-8), combined with line-locked, second harmonic detection allow good sensitivity and rapid time response
- Shares operator and data collection with DACOM instrument

New and Improved for SOLVE-2!

- Bandwidth improved to 15 Hz
- Improved, automated in-flight calibration procedures
- Preliminary values for water vapor concentration will be reported on the aircraft
- Additional high data-rate, high bandwidth data system added in parallel to existing system
DACOM - Differential Absorption Carbon Monoxide Measurement

- Mid InfraRed diode laser instrument
 - lead salt diode lasers; liquid nitrogen cooled
 - N_2O at $4.5 \mu m$; CH_4 at $7.6 \mu m$; CO at $4.7 \mu m$
- Wavelength modulation at ~10 kHz; 2F detection normalized by chopped DC
- Line-locked to absorption lines in low-pressure reference cell
- Outside air ingested through Rosemont probe, through 36 m, 0.3 liter Herriott cell
- Response time approximately 1 sec
- Periodic in-flight calibration events using calibrated Niwot Ridge air

New and Improved for SOLVE-2!
- Improved data acquisition system and software
- Equipment weight and size drastically reduced
 - now fits in single rack with DLH
<table>
<thead>
<tr>
<th>Instrument</th>
<th>Species</th>
<th>Priority</th>
<th>Time Response</th>
<th>Precision ((1\sigma))</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diode Laser Hygrometer</td>
<td>H(_2)O(v)</td>
<td>1</td>
<td>50 msec</td>
<td>1% or 0.1 ppmv</td>
<td>10% or 1 ppmv</td>
</tr>
<tr>
<td>Diode Laser In-Situ</td>
<td>N(_2)O</td>
<td>2</td>
<td>1 sec</td>
<td>0.1%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>CH(_4)</td>
<td>2</td>
<td>1 sec</td>
<td>0.1%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>2</td>
<td>1 sec</td>
<td>1% or 1 ppbv</td>
<td>2%</td>
</tr>
</tbody>
</table>
Location of the DLH External Path on the DC-8 Research Aircraft

- Laser Transceiver at Station 530
- DLH Optical Path ~24 meters round trip
- Retroreflecting Panel on Engine #4
CAD Perspective of DLH Transceiver

1.4 µm Laser, Reference Cell

Alignment Laser

Solar Filter Fresnel Lens Detector
Bird’s-Eye View of DLH Mounted in DC-8 Window

- Solar-Blocking Filter
- Shutter
- Laser, Collimating Lens
- Alignment Laser
View from inside the DC-8 showing Alignment Laser on Retroreflecting Panel

- Retroreflector
- Visible Alignment Laser
- Outboard Engine
Transmission Spectrum in Region of DLH Absorption Lines

T = -50 deg C; Tdf = -60 deg C; p = 0.25 atm; p_{H2O} = 0.0108 mbar
Scan of Laser Current over Weak Line
Showing Assessment of 2F Baseline 'Zero'
Data Retrieval
- combining calibration with measurements -

• Calibration Data used to determine linestrength (S) and modulation depth (m)
• Analytical model gives, for a matrix of \(p, T \):
 \[
 \frac{2F}{DC} \bigg|_{\lambda_i, L} = f_i(\chi[H_2O(v)], p, T)
 \]
• Polynomial fit to \(f_i \)
• Polynomial inverted to give:
 \[
 \chi[H_2O(v)] = g_i(2F/DC, p, T, \lambda_i, L)
 \]
• DLH provides DC, 2F at 20/sec
• Aircraft data system provides \(p, T \) at 1/sec
• Measured 2F, DC, \(p, T \) combined to yield \(\chi[H_2O(v)] \)
Comparison among DC-8 Water Vapor Sensors during SOLVE

SOLVE Flight: January 23, 2000
NASA Langley/Ames DLH
Cryogenic Hygrometer
JPL Laser Hygrometer

Water Vapor volume mixing ratio

Time, UT

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
Comparison among Water Vapor Sensors during SOLVE
Sensors Aboard DC-8 and ER-2 Aircraft

SOLVE Flight: January 23, 2000
- Cryogenic Hygrometer (on DC8)
- Harvard (on ER2)
- JPL Laser Hygrometer (on DC8)
- JPL (on ER2)
- NASA Langley/Ames DLH (on DC8)
N$_2$O (ppbv)

DC-8 Time, UT

DACOM N$_2$O (DC-8)
ACATS N$_2$O (ER-2)
ALIAS N$_2$O (ER-2)
SOLVE objectives supported

• DLH Water Vapor measurements
 - SAGE-III validation
 - in-situ reference for remote measurements and balloon-borne sensors
 - intercomparison with instruments on Geophysica
 - photochemistry
 - tracer

• DACOM measurements
 - long lived tracers provide information about stratospheric air and thus context in which to interpret other measurements
 - comparison with other instruments on DC-8 and instruments on Geophysica
 - linkage to first SOLVE measurements, historical record

• Both instruments are being downsized and automated with a goal of providing data at lower deployment burden