Use of POAM Data in the SOLVE-2 Campaign

PI: Richard Bevilacqua (Naval Research Laboratory)

Co-I’s: Karl Hoppel (Naval Research Laboratory)
Cora Randall (University of Colorado)
Jerry Lumpe and Michael Fromm (CPI)

SOLVE-2 Pre-Mission Science Team Meeting
NASA Dryden Research Facility
11 December 2002
Polar Ozone and Aerosol Measurement (POAM III)

POAM III is a 9-channel visible/near infrared photometer for making measurements of stratospheric constituents using solar occultation techniques.

- The POAM measurement complement includes:
 - Ozone (10-60 km)
 - Aerosol Extinction (10-30 km)
 - Nitrogen Dioxide (20-40 km)
 - Water Vapor (10-40 km)
 - Oxygen (10-60 km)

- POAM III was launched on the SPOT 4 spacecraft on 21 March 1998 into a polar sun synchronous orbit (833 km, 98.7° inclination, 1030 equatorial crossing). The instrument is currently operational.

- POAM III is the successor to the POAM II instrument which operated from Oct. 1993 through Nov. 1996.
I. SAGE III Validation:

- POAM and SAGE III are in similar orbits.
- POAM and SAGE III use the same measurement technique (solar occultation) and wavelength range (vis/near IR), and measure the same constituents (O$_3$, H$_2$O, NO$_2$, aerosol extinction).
- POAM is now a mature and well validated instrument.

II. Value added science products made available to the SOLVE-2 team for flight planning

- Daily constituent maps, PSC catalog, ... etc.

III. Pursue science studies with the SOLVE-2 data set:

- PSC type discrimination, ozone loss studies, etc
Use of POAM Data in the SOLVE-2 Campaign: Validation

POAM Version 3 Retrievals Validation References Summary

- **Ozone**
 - Prados *et al*., in press at JGR, 2002.

- **Aerosols**

- **NO$_2$**

- **H$_2$O**
 - Bevilacqua *et al*., in preparation.
Use of POAM Data in the SOLVE-2 Campaign: Ozone

Comparisons with respect to POAM

- Satellite ozone measurements have demonstrated an accuracy of ±5% from 13 to 45 km.

POAM/SOLVE-1 Comparisons

- Balloon and airplane-based measurements during SOLVE-2 unlikely to narrow ±5% uncertainty.

- DC-8 lidar measurements most useful for relative measurements along occultation paths.

- Balloon measurements most important below 13 km.
Use of POAM Data in the SOLVE-2 Campaign: H₂O

- Statistical POAM/SAGE comparisons important because few other water measurements to be made during SOLVE-2.

- Balloon-borne Mk-IV and frost point measurements made during SOLVE-2 important for calibrating statistical comparisons.

SOLVE-1 Comparisons

Bevilacqua et al., in prep., 2002

POAM/HALOE Summary
• POAM comparisons made during SOLVE-1 showed larger differences in the lower stratosphere than expected from the POAM/HALOE statistical comparisons.

• POAM/SAGE statistical comparisons (along with balloon-borne comparisons during SOLVE-2) will allow examination of this issue.
• How well satellites can measure aerosol extinction in the present low aerosol loading environment is still an open question.

• POAM/SAGE III comparisons (in light of the extensive POAM/SAGE II comparisons) can be important here.

• The suitability of satellite measurements for PSC detection can be well tested with POAM and SAGE comparisons with DC-8 lidar measurements.
Direct Coincidence Comparisons:

- POAM and SAGE will be within 3 degrees from about 15 Nov through 15 Jan. (SAGE always north of POAM), and there is a SAGE lunar occultation measurement coincidence with POAM.
- SAGE measurements will be in closest coincidence to Esrange in mid-Jan., and POAM will be in closest coincidence in early Feb.

• It should be possible for the DC-8 to overfly both POAM and SAGE. This will be very valuable for ozone and PSC measurement comparisons.
Use of POAM Data in the SOLVE-2 Campaign: Validation Techniques

Similar air mass comparisons:
- Trajectory mapping
- Vortex average comparisons

Lumpe et al., JGR, 2002
Use of POAM Data in the SOLVE-2 Campaign: PSC analysis

POAM PSC type discrimination algorithm by Strawa et al. (2002) applied to PSCs observed during the SOLVE-1 winter: Type 1A (NAT) clouds have relatively high extinction ratios and low extinctions.

Temperature distribution (UKMO) of PSC types observed by POAM during the SOLVE-1 winter. Type 1A clouds are observed at a larger range of temperatures than Type 1B.
Ozone loss, for the indicated northern hemisphere stable winters in which POAM data is available, as a funct. of equivalent latitude estimated using POAM ozone measurements and vortex average descent rates (determined using Joan Rosenfield’s net heating rates and a diabatic trajectory code).

Hoppel et al., JGR, 2002
POAM Data Products for SOLVE-2:

• POAM data files delivered to the SOLVE-2 web site within 24 hours of receipt: ozone, water vapor, NO2, concentration and mixing ratios, and aerosol extinction on 1 km grid.

• POAM PSC catalog

• Daily maps

• Proxy ozone fields.
Use of POAM Data in the SOLVE-2 Campaign: Daily Maps

4 Dec., 2002

Ozone

NO₂

H₂O

PSCs
Use of POAM Data in the SOLVE-2 Campaign: Daily PSCs
Evolution of POAM proxy ozone (determined using pv correlations) on the 500 K potential temperature surface in the 1999/00 northern hemisphere winter.

Randall et al., JGR, 2002
Use of POAM Data in the SOLVE-2 Campaign: Objectives

I. SAGE III Validation:

- POAM and SAGE III are in similar orbits.
- POAM and SAGE III use the same measurement technique (solar occultation) and wavelength range (vis/near IR), and measure the same constituents (O_3, H_2O, NO_2, aerosol extinction).
- POAM is now a mature and well validated instrument.

II. Value added science products made available to the SOLVE-2 team for flight planning

- Daily constituent maps, PSC catalog, … etc.

III. Pursue science studies with the SOLVE-2 data set:

- PSC type discrimination, ozone loss studies, etc.