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Abstract.  Ozone measurements by various platforms during the Inter-
national Consortium for Atmospheric Research on Transport and Transfor-
mation (ICARTT) operations in the summer of 2004 are assimilated into the
STEM regional chemical transport model. Under the four-dimensional vari-
ational data assimilation (4D-Var) framework, the model forecast (background)
error covariance matrix is constructed using the NMC approach. The inver-
sion of the covariance matrix is implemented using singular value decompo-
sition (SVD) method. Using truncated SVD regularization (TSVD), where

the singular vectors associated with small singular values (< 0.01 leading
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singular value), the method is numerically stable even with severely ill-conditioned
vertical correlation covariance matrix and large horizontal correlation dis-

tances generated through the NMC approach. In addition, the model back-
ground error variance is calculated by the observational (Hollingworth-Lénnberg)
method. Results from data assimilation experiments where observations from
different platforms (aircraft, surface, and ozonesondes) are assimilated are
presented and discussed. The impacts of the various measurements are eval-
uated on their ability to improve the predictions, defined as the information
content of the observations under the current framework. In the end, all ob-
servations are assimilated into the C'TM. The final analysis matches well with
observations from all platforms. The effect of assimilating ozone observations

on model predictions of other species is also investigated.
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1. Introduction

Similar to numerical weather predictions (NWPs), an improvement in air quality anal-
yses and forecasts requires integration with observations to constrain the model. This
is known as data assimilating. Experiments in NWPs have showed that advanced data
assimilation such as four-dimensional variational data assimilation (4D-Var) are more ef-
fective than the traditional techniques such as nudging, and Optimal Interpolation (OI).
Compared to NWPs, there is much less experience in chemical data assimilation.

Fisher and Lary [1995] first applied 4D-Var data assimilation to the analysis of chem-
ically active trace species using a Lagrangian model. FElbern et al. [1997]; Elbern and
Schmidt [1999]; Elbern et al. [2000]; Elbern and Schmidt [2001]; Hoelzemann et al. [2001]
developed a 4D-Var chemical data assimilation using a regional Eulerian model, EURo-
pean Air pollution Dispersion model (EURAD). Improvements in ozone forecasts subse-
quent to the assimilation procedure was found [Elbern and Schmidt, 2001]. Using 4D-Var
approach with regional CTM STEM-2K1 (Sulfur Transport Eulerian Model, version 2K1)
[Daescu and Carmichael, 2003; Carmichael et al., 2003; Sandu et al., 2005], Chai et al.
[2006] showed improvement of analyses by assimilating flight measurements of various
chemical species. In previous studies, the model error covariance matrices have not been
specifically investigated, although it is well known that this will greatly affect the data
assimilation results.

Coordinated measurements were made by the International Consortium for Atmospheric
Research on Transport and Transformation (ICARTT) consortium during the 2004 study

in northeastern United States and the Maritime Provinces of Canada. These measure-
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ments provide invaluable information in evaluating and improving air-quality models and
model forecasts [Singh et al., 2006]. The rich set of observations and extensive model
studies during ICARTT make this period well suited for data assimilation experiments,
and an ideal setting to test the advanced chemical data assimilation framework, to gen-
erate better analyses using both observations and model results, and to investigate the
potential to improve the future of air quality forecasts.

In this paper we focus on the use of the ICARTT ozone measurements from different
sources to improve the predicted ozone distributions. We demonstrate how the modeling
and measurement activities of ICARTT can be used in the data assimilation framework.
We specifically demonstrate that the model forecast (background) error covariance matrix
can be constructed using the air quality forecasts during the ICARTT field experiments.
Then we introduce a truncated singular value decomposition regularization (TSVD) tech-
nique to implement the error correlation matrix in the analysis. We also systematically
evaluate the information content of measurements from different platforms by assimilating
them separately and comparing the predictions to withheld observations. A final analysis
is performed with all the observations assimilated into the regional CTM. The effects of
the data assimilation on model predictions of other species, and on the chemical forecasts
after the data assimilation period are investigated.

The paper is organized as the following. A brief description of the STEM model and
the variational data assimilation procedure is given in Section 2. Section 3 describes the
model setup and the observations to be assimilated. Section 4 discusses how the model

error covariance is generated and implemented into the current 4D-Var system. Data
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assimilation experiments are presented and discussed in Section 5. A summary is given

in Section 6.

2. Method

2.1. STEM

In this study, we employed the STEM-2K3 [Tang et al., 2004] regional chemical trans-
port model. The STEM-2K3 model is a flexible regional-scale chemical transport model
using SAPRC99 chemical mechanism [Carter, 2000] with on-line photolysis solver [Tang
et al., 2003]. Meteorological inputs to the model came from the fifth-generation Mesoscale
Model (MM5) using the Aviation model (AVN) during forecasting and NCEP (National
Centers for Environmental Prediction) FNL (Final Global Data Assimilation System) an-
alyzed data during post-analysis. For this study the model domain was the continental
United States, with a 60 km resolution, using a grid of 62 cells in longitude, and 97 cells
in latitude. Vertically the model had 21 layers, extending from the surface to 100 hPa
using 0.999, 0.9965, 0.9925, 0.985, 0.97, 0.945, 0.91, 0.87, 0.825, 0.77, 0.71, 0.65, 0.59,
0.53, 0.47, 0.41, 0.35, 0.285, 0.21, 0.125, and 0.04 in sigma coordinate. The Grell cumu-
lus parameterization [Grell et al., 1994] and the medium-range forecast (MRF) planetary
boundary layer parameterization [Hong and Pan, 1996] were used for the MM5 runs. The
emissions inventory was based on the U.S. EPA National Emissions Inventory NEI 2001,
with updated large point source emissions (Gregory Frost at NOAA Earth Systems Re-
search Laboratory, personal communication). Upper troposphere lightning NOx emissions
were added to the model based on the National Lightning Detection Network (NLDN),
modulated by signal strength and multiplicity of flashes. Biogenic emissions were esti-

mated using BEIS 2 (Biogenic Emissions Inventory System) which generates time-variable
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isoprene and monoterpene emissions driven modulated by meteorological variables from
MM5. Forest fires that occurred during the ICARTT period were largely outside the
model domain (in Alaska and Northwestern Canada), therefore their influence was in-
corporated through lateral boundary conditions from MOZART GFDL (NOAA GFDL)
[Horowitz et al., 2003] during the forecast, and from MOZART NCAR [Pfister et al.,
2005], the latter using assimilated CO values from MOPITT (Measurements of Pollution
in the Troposphere instrument on board the TERRA satellite). For ICARTT simula-
tions the STEM domain was the Continental US, with boundary conditions provided by
the MOZART global chemical model predictions. Further information about lightning

emissions can be found in Tang et al. [2006].

2.2. STEM 4D-Var system

The current 4D-Var data assimilation system includes a regional CTM, i.e., the STEM,
its adjoint model, and a minimization routine. Here we briefly describe the system, and
the readers are referred to Chai et al. [2006] for further details. The model forecast error
covariance is discussed in detail in Section 4.

The evolution of the chemical constituent concentration vector ¢ in time () is described
as

dc

1 1
9 - V- (oK - SfL+E 1
5 u Vc+pV (p Vc)+pf+ (1)

Here we denote by u the wind field vector, p the air density, K the turbulent diffusivity

tensor, f the chemical transformation rate, and E' the rate of elevated emissions.
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The adjoint of the tangent linear model of the STEM-2K1 defines the evolution of the

adjoint variable vector A\, which reads as

g—i\+v-(u)\):—v-<pK-V%)—(F‘)\)_¢ (2)

In this equation ¢ is a forcing functional vector and will be defined later. F'is a tensor
function, obtained by linearizing the incremental f as 6f ~ F - §(pc). As f is a nonlinear
function of (pc), F also varies with (pc), i.e. F' = F(pc). This implies that the forward
model must be first solved, the state c(z,t) saved for all ¢, then the adjoint model can be
integrated backward in time from 7" down to ¢°.

The 4D-Var system seeks the optimal solution which minimizes the cost functional J,

defined as

T = 5leo—af" B [eo = ] + 5 ly— h(e)" Oy = h(e)] ©

where B and O are error covariance matrices for a priori model forecast (background)
and observations in discrete spaces, respectively. h is a projection operator, calculating
the observation vector y = y(z,t) from the model space ¢ = ¢(x,t). In the current study
the initial concentrations ¢y = c(t = 0) are chosen as the only control parameters to
adjust, though in principal any model parameters including emissions can be adjusted.
Hereafter, the subscript “0” is used to denote variables at the instant ¢ = 0. Assuming
that the operator h is linear, h(c) can be written as h(c) = H - ¢. In our application, H
reflects trilinear interpolation in space and linear interpolation in time when constructing
model counterparts of the observations. It is also represented in the H transformation

matrix.
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The forcing term ¢ in equation (2) appears as
¢=H"-0"-[y—H-( (4)

The backward integration of equation (2) gives adjoint variables at any time, which are

the sensitivities of the cost functional with respect to state variables (concentrations), i.e.
§J=X""6c (5)

Note that the background part of the cost functional in equation (3) adds one more
term to the gradient of the cost functional with respect to initial concentrations. Using

equation (3), we have

0J = [/\(7; + (Co — Cb)T . B_1:| . 560 (6)

where A\l + (cy — ¢3)T - B™! is the gradient information needed for the minimization. The
optimal initial condition ¢y can be found efficiently by applying many different minimiza-
tion routines. Quasi-Newton limited memory L-BFGS [Byrd et al., 1995] is used by most
4D-Var applications. In this article, an updated version, L-BFGS-B [Zhu et al., 1997] is
used. Chai et al. [2006] found that adding bound constraints improved the computation
efficiency. For the following data assimilation tests, the maximum number of iterations is
set to be 25 in the minimization. In each iteration, both the STEM and its adjoint are

run in the 4D-Var data assimilation time window.

3. Experiment setup and observations

Figure 9 shows the computational domain, which has a horizontal resolution of 60km
and 21 vertical levels. Note that we typically use a 12 km resolution for both forecast-
ing and analysis for this domain when there is no 4D-Var calculation [Tang et al., 2006].

However, since the typical 25 4D-Var iterations add about 80 times to the computational
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time compared to the STEM forecast run, we focus on a 60 km grid, which is more rep-
resentative of the resolutions of global models. The boundary conditions for this domain
came from the 60 km grid covering the continental U.S. that was described in Section 2.1.
We selected the data assimilation time window to be 12 hours, which is 1200 — 2400
UT, on July 20, 2004. The date was chosen because it was a day with a high density of
observations. The time window covers daytime peak ozone period, as well as the opera-
tional time of NOAA P3, NASA DC-8 flights, and two ozonesondes in the domain. Most
of the NOAA DC3 flight was also in the chosen time window. The ozone measurements
during this period used in the data assimilation experiments are listed in Table 1. The
locations of the AIRNOW measurements are shown in Figure 9. Figure 2 shows the flight
tracks, and the locations of the AIRMAP measurements, and the ozonesonde locations.
The CTM time step is 15 minutes. With operator splitting, during each time step,
transport in each direction is processed twice and the chemistry is solved using a Rosen-
brock method [Sandu et al., 2003; Daescu et al., 2003]. The measurements contain more
temporal and spatial variation than the model can resolve at the current resolutions. For
instance, Figure 9 shows that the ozone measurements from different monitoring sites
inside one grid cell can vary by as much as 30 ppbv. Such variation is called represen-
tative error and is normally much larger than the measurement error [Daley, 1991]. In
the data assimilation framework, it is necessary to account for the observational errors
which include both the measurement errors and the representative errors. One option is
to use the standard deviation of ozone measurements within a grid cell, as a measure of
the representative error. The results for this study are shown in Figure 3. It is seen that

the representative error varies from a maximum value of & 13 ppbv at night to &~ 5 ppbv

DRAFT July 5, 2006, 4:39pm DRAFT



CHAI ET AL.: 4D-VAR EXPERIMENTS WITH ICARTT OZONE MEASUREMENTS X-11

during the day. In the following data assimilation experiments we assume a constant
observational error of 8 ppbv, and that O in equation 3 is diagonal, i.e. no correlation
between the observational errors. In addition, all the observations are processed according
to the model resolution by taking the averaged value inside each four-dimensional grid

cell.

4. Model forecast error covariance

4.1. NMC Results

There are several methods to establish the model forecast error covariance matrices
needed in the data assimilation procedure. One method is to use the NMC approach [Par-
rish and Derber, 1992], which is used in operational data assimilation with NWPs. During
the ICARTT field campaign, 3-day air quality forecasts using the STEM were initiated
everyday. This resulted in three different forecasts for any specific time. Following the
NMC method approach, model error covariance B in equation 3 can be calculated by sub-
stituting the model errors with the differences between forecasts. Specifically, we obtain

model error samples at each point using

e =cli—¢f (7)

(12521

where “i” is used to differentiate different forecasts.

Unless spectral methods are used where the control variables form diagonal B ma-
trices [Parrish and Derber, 1992], B matrices are often too large to store due to the
correlation between model forecast errors. For instance, if only initial ozone concentra-
tions are chosen as control parameters to be adjusted, the number of control variables is

Ny X Nyx N, = 25x22x21 = 11,550. This will result in a 11,550 x 11, 550 B matrix that
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has 133,402, 500 components. Not only the direct inverse of a large matrix is extremely
expensive, the often rank-deficient B makes the inverse numerically unstable. Courtier
[1997] and Lorenc [1997] proposed to change the control variables by preconditioning in
order to avoid the direct inversion. Recently multi-dimensional recursive filters have been
used to model error correlations [Gao et al., 2004; Purser et al., 2003a, b]. However, it is
difficult to apply the method to non-uniform grids such as the vertical grid used in the
STEM, or complicated non-Gaussian covariances. Here we use singular value decomposi-
tion (SVD) that directly implement the covariances calculated from the NMC approach.

To avoid storing the error covariance matrix explicitly, we assume B can be written as

B=X®YQ®Z®C (8)

where X, Y, and Z are matrices of sizes N; x Ny, N, x N, and N, x N, and they represent
the error correlation in three different directions. C' is the error covariance matrix at a
single grid point that represents both the error variances and correlation between different
species. For the current case, C, as a scalar, is the background error variance for ozone
only. ® denotes the Kronecker product [Horn and Johnson, 1991].

The correlation coefficients are then calculated in three different directions. For in-

stance, the model error correlation coefficients between two vertical levels are calculated

as
€y €k
R(ky, ks) = 1k (9)
\/Ekl le . €k26k2
Here “—” denotes the average over all grid points on the specific level. Also note that there

are three samples of “errors” at each grid point, as calculated by equation (7). Figure 4
shows the correlation coefficients between vertical levels. The diagonal structure indicates

that the correlation between two vertical levels can be approximated by f(|z(k1) —z(k2)|),
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as assuming the correlation as a function of grid numbers, i.e. f(]k1 — ko|), for such a
non-uniform grid is not applicable here. Figure 5 shows the correlation as a function of
the distance between two levels. We use a simple function e_lAz_z;, where the vertical length
scale [, = 2500 m, to approximate the vertical correlation. This function fits the actual
NMC correlation results pretty well, as shown in Figure 5.

Similarly, the correlation coefficients in two horizontal directions are calculated and
plotted in Figure 6 as a function of the distances. It is seen that there is little difference

_ARlS
in the two horizontal directions. They can be approximated by e »'® , where [, = 270 km.

4.2. Background error variance through observational method

Another approach to calculate the background error covariance matrices is the obser-
vational method (Hollingworth-Lénnberg method) [Hollingsworth and Lénnberg, 1986;
Daley, 1991]. It provides a more reliable estimate of the background error variance, as
well as the ratio between the observation error variance and background error variance,
which directly determines the weighting between the two terms in equation (3). However
as the name implies, this method requires a substantially dense observational network.

As shown in Figure 9, the dense coverage over the domain by the AIRNOW surface
stations makes it suitable for the observational method. Using hourly observations during
July 20-22, 2004 at each station, the correlation between the observational increment

y — h(c) at two stations i, j is calculated as

(v’ — h'(e) (¥’ — W (c))

Rij =
VT —R@) - — ()
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“w o»

where y is the observation and h(c) is the model prediction before assimilation.
represents the average over time. R;; are calculated between any two stations and the
biases are removed such that R;; is in the range of [—1,1].

Figure 7 shows R;; as a function of horizontal distance between station pairs. The zero
intercept of the curve R, = lima, 0 R(Ah) ~ 0.6 measures the spatially correlated part

(background error) of the total error, i.e.

E2
R,=—28 _ 11
B+ B (1)

Using this and Ep = 8 ppbv, Ep is estimated to be 10 ppbv. Note that R(Ah)/R, is an
estimate of the horizontal background error correlation at ground level. The previously
estimated horizontal correlation is also plotted in Figure 7 after being adjusted by R,.
They agree reasonably well. Compared with the correlation results from the NMC ap-
proach using all the levels, the correlation distance at ground level using the observational

approach is slightly smaller.

4.3. Inverse of background error covariance using SVD method
The realistic treatment of background errors also raises numerical issues, such as how
to invert B. Using the property of Kronecker product [Horn and Johnson, 1991], B! can

be written as
B—l:(X®Y®Z®C)_]‘:X_1®Y_1®Z_1®C_1 (12)

Although it is straightforward to directly invert X, Y, Z, and C as all the matrices have
full rank and small sizes, it is error-prone to compute the matrix inverse for ill-conditioned
matrices. For instance, Sun and Crook [2001] calculated the matrix inverse using singular

value decomposition (SVD) and found the correlation length scale cannot be greater than
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four times the grid spacing in order to avoid the ill-conditioning problem. Here we propose
to use SVD on the matrices, but truncate the singular vectors that are associated with
small singular values to approximate the original matrices.

Using SVD, a general m X n matrix A can be written as
A=UxV" (13)

where ¥ is an m x n matrix which is zero except for its min(m,n) diagonal elements, U
is an m X m orthogonal matrix, and V' is an n x n orthogonal matrix. For the symmetric

matrices X, Y, Z, and C, equation (13) can be simplified as
A=UsUT (14)

The diagonal elements of ¥ are the singular values of ¥. The singular values o; are
positive for positive definite matrices. They are arranged in the descending order, i.e.

01 > 0g9---0, > 0. The columns of U are the corresponding singular vectors. Then it is

easy to get
AT = Uiyt (15)
where the only non-zero elements of X" are the diagonal ones and they are o-, -, -+, .

The small singular values are the sources of instability and they make the matrix-vector
multiplication A 'b extremely sensitive to the perturbation of the vector b. It has been
proven that Ab is the minimum norm solution that minimizes || A,z — b||, which is called
truncated singular value decomposition (TSVD) regularization [Gwak and Masada, 2004;
Xu, 1998; Hansen et al., 1992]. p denotes the rank of the matrix A, that approximates
A.

A, =US,UT (16)
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Ar=UstuT (17)
where ¥, is the diagonal matrix after setting 0,41, -,0p+1 to zero. X7 is a diagonal
matrix, with the diagonal elements as all, 0—12, cee é, 0,---,0. With TSVD regularization,
B! is thus approximated by

B'=X Y, ®Z ®C/ (18)

where p may be different for matrices X, Y, and Z. It is picked to have the final matrix
condition number smaller than 100. Table 2 shows the maximum and minimum singular
values and condition numbers of X, Y, and Z, as well as the truncation rank p used
in TSVD regularization. It demonstrates the severely ill-conditioning of Z. Without
regularization, the direct inverse of Z results in very large background term in equation (3)
and that makes the minimization process stop. Figure 8 shows Z,, as well as Z, which is
used to approximate the vertical correlation obtained through the NMC approach, shown
in Figure 4. The maximum change of the correlation coefficients represented by elements
of Z and Z, is found to be 0.0073. This implies that such truncation does not change
the represented correlation structure, but only removes the noises from the correlation
matrix.

The Kronecker products in equation (18) are implemented by applying the XF, V¥,
Zf, and CF subsequently in three different directions, and at each grid point between
different species. In the following applications, we take square root of X; , Y;’, and Z;

matrices, apply them in three directions before applying C’; , and then use the square root

matrices in a reverse order.

5. Data Assimilation Results
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5.1. Base case run

The STEM-predicted ozone distribution without assimilation provides the base condi-
tions for the analysis. The initial and boundary conditions were provided from a STEM
simulation at the same resolution, but using a large continental domain [Tang et al., 2006].
The wind fields at 1600 UT and 2000 UT are shown at two different heights, 990 m and
3553 m, in Figure 9. There is not much difference between 1600 UT to 2000 UT, but the
flow fields at the two heights vary significantly. Over land the wind was mainly westerly.
The winds were light in the New England area at low altitudes, which makes the ozone
production to be largely determined by the local emission.

Table 3 lists the performance of the forward model predictions as evaluated by the
observations. The RMS errors range from 13.4 to 26.3 ppbv, with a positive bias for the
predictions of surface ozone. This was a general finding of seven different CTMs used to
forecast surface ozone during ICARTT [McKeen et al., 2005], including the STEM model.
This is shown by the 15.3 ppbv positive bias in the predictions at the AIRNOW surface
sites. An over prediction was consistently found in the base run for ozone measurements
below 3 km (from aircraft and ozonesondes). In contrast, ozone predictions above 4
km were biased low. These values are significantly influenced by the boundary conditions
from the global model used by the STEM as discussed by Tang et al. [2006]. These
differences will be discussed in more detail later. The bias and RMS values are smaller for
the P3 and DC-8 aircraft observation. The effect of model resolution is most pronounced
for the surface predictions and not so pronounced for the other data sets. Forward model
predictions using a 12 km grid reduced the predicted mean ozone levels by 3 ppbv for the

P3 observations below 1 km.
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The standard deviation of the combined background and observational errors is
E =/E% + E2 = V102 + 8% ~ 12.8ppbv. (19)

This is an estimate of the expected model performance. This value can be reduced either
by improving the model performance at the current resolution, thus decreasing Eg, or
by increasing the model resolution, thus decreasing the representative error, the major
component of Eg. It should be noted that the previously obtained ratio between Ep and
FEo cannot be directly applied to other models, which probably have different Ep values.
For the same model, the change of resolution will affect both Eg and Ep.

Comparisons between the base case model predictions and the observations are shown
in Figures 10-12. In general the ozone predictions show high positive biases below ~ 3 km
and high negative bias above ~ 4 km. The analyses after assimilating all observations are

also shown. These results will be discussed in Section 5.3.

5.2. Information content

Eight different data assimilation tests were performed to assess the impact on the as-
similation results of the different observation sets. This is an important issue in the design
of observing systems to support chemical data assimilation. Basic questions that arise
include: do we get a bigger impact by increasing spatial or temporal samples? or by
adding information near or above the surface?

The cases are listed in Table 4 and Table 5 shows the impact on the predictions after
the assimilation. For the majority of the cases, the assimilated observations improve
the model predictions as determined by the withheld observations, and quantified by the

reduced RMS errors (shown as negative RMS error changes in Table 5). Exceptions are
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the increases in RMS errors for the MOZ-NF (MOZAIC flight, New York-Frankfurt)
predictions for Case 1 and Case 8, and for the DC-8 In Situ predictions after assimilating
the MOZ-FN (MOZAIC flight, Frankfurt—New York) observations (Case 2). Probably the
MOZAIC flight observations during the takeoff at 2238 UT (1838 EDT) are larger than the
average of the 60 km x 60 km grid including NEW York area where the spatial variation is
expected to be large. In addition, the base case predictions often over-estimate the ground
observations as discussed in Section 5.1. The small RMS errors for MOZ-NF observations
is probably due to the combination of the high biases for both the observations and the
base case predictions. So the small RMS errors are likely to go up if the over-prediction
at the ground level is mitigated.

It is seen that assimilating AIRNOW observations (Case 1) helps to reduce the model
RMS errors against AIRMAP, DC3, and P3 by 7.6, 6.0, and 5.8 ppbv respectively. Ob-
servations by DC-8 lidar, P3, and DC3 also show significant positive effects on model
results when assimilated in Cases 7, 4, and 2. Cases 5 and 8 have the smallest effect
to improve the model results due to the limited spatial coverage of the AIRMAP sites
and the ozonesonde locations. Case 6 shows more improvement than Case 4 as the DC-8
covers a larger area within the domain.

The observation number after performing averaging inside the four-dimensional grid
cells is a good indication of the information content of the observations for each platform.
As the observation numbers of AIRNOW, DC-8 lidar, DC3 lidar, and P3 listed in Table 4
are larger than the number of observations from the other platforms, they provide greater
impact in improving the model predictions when assimilated. Although the observation

number for AIRMAP (192) is close to that of P3 (208), the effect of AIRMAP is smaller
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due to the limited spatial coverage (both horizontally and vertically). Note that the
information content also depends on the model resolution. For instance, the DC3 lidar
generated a vertical profile every ten seconds, which has 85 data points with a vertical
resolution of 90 m. Such information cannot be fully utilized with a 60 km grid. It
will bring much more information to a smaller domain with higher spatial and temporal

resolutions.

5.3. Final analysis

A final analysis is obtained after all the observations are assimilated. It is listed as
Case 9 in Table 4 and Table 5. Table 5 shows that the observations from all platforms
can be successfully assimilated simultaneously, the match between predictions and obser-
vations are as well as when the observations from each individual platform are assimilated
separately. In fact, the predictions for some platforms (MOZ-FN, DC8-In, and RHODE,
see Table 4 for descriptions of observations) are even better. The exception is again for
MOZ-NF, for which the RMS error increases by 4.0 ppbv. The reason is discussed in
Section 5.1. The model biases and RMS errors of the final analysis are listed in Table 6.
Except for MOZ-FN, the largest model bias is —5.3 ppbv for MOZ-FC, and the largest
model RMS error is 15.8 ppbv for DC3 lidar, which is comparable to the expected model
performance, F = 12.8 ppbv, calculated in equation (19).

The comparisons between predictions of Case 9 and the base case, as well as observations
are shown in Figures 10-12. Figure 10 shows predicted surface ozone at 2000 UT by
the base case and the final analysis, along with observations by AIRNOW and AIRMAP.
While the base case over-predicted ozone at many locations, results from the final analysis

match most observations well. There is little change in predictions where there are no
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measurements such as the southeast corner of the domain. The time series of ozone
concentration at AIRMAP locations in Figure 11 shows significant improvement in the
final analysis at two locations (AIRMAPCS and AIRMAPTF), but has little change
over the base case for Appledore Island (AIRMAPIS) location. At Mount Washington
Observatory location (AIRMAPMWO), the ozone predictions change from over-prediction
for the base case to “under-prediction” for the final analysis. The “under-prediction” is
probably due to bias of the measurements. According to the notes provided with the data,
the ozone measurements were strongly impacted by exhaust from the generator on site
and cog railway which runs from late April/early May to late October/early November.

Ozone profiles by two two ozonesondes (RHODE and RONBR), and corresponding
model predictions by the base case and Case 9 are shown in Figure 12. The profiles
clearly indicate that the model over-predicted ozone below 3000 m, but under-predicted
ozone above the height for the base case run. Ozone at the high altitudes is mainly
due to long range transport. For regional CTMs, predictions are greatly affected by the
boundary conditions [Tang et al., 2006]. Ozone at the low altitudes is mostly impacted by
the local emissions. Although both boundary conditions and emission inventories are kept
the same as the base case, the adjustment of initial ozone concentration is still able to
emulate such effects in a short period. Results of the final analysis after assimilating the
ozone observations show both the under-predictions at high altitudes and over-predictions
at low altitudes are largely remedied.

Figure 13 shows the “curtain plots” (continuous profiles) of ozone measured by a lidar
on board DC-8, along with their model counterparts for the base case and Case 9. The

base case again over-predicts observations by DC-8 lidar under 3000 m and under-predicts
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ozone at higher altitudes. After the data assimilation, significant improvements are found
in all regions.

Figures 14 and 15 show the in situ ozone measurements by DC-8 and P3, respectively.
Part of the DC-8 flight is out of the domain as shown in Figure 2. In the first part of
the DC-8 flight, the base case over-predicts ozone above 4000 m and under-predicts below
4000 m. The final analysis is effectively improved in both regions. For the second part of
the DC-8 flight, significant improvement after assimilation is seen during 2030-2130 UT,
when the flight is above 4000 m. There is little change made by the data assimilation
before 2030 UT and after 2130 UT. Figure 2 shows that the beginning of the second
part of the DC-8 flight is at the west boundary of the current domain, which is a in-
flow boundary, indicated by the wind fields shown in Figure 9. With the same in-flow
boundary conditions used for both the base case and Case 9, the ozone predictions cannot
be improved by only adjusting the initial conditions. On the other hand, there is a good
agreement between the the base case predictions and DC-8 In Situ measurements after
2130 UT. The final analysis still sees improvement after 2200 UT. Predictions on the
P3 flight measurements by the final analysis improves significantly over the base case,
as demonstrated by Figure 15. However several high ozone values (> 90 ppbv) were
observed, but are not present in model results of Case 9.

The assimilation of all the various ozone observations allows us to demonstrate the
impact of data assimilation on the generation of a reanalysis field. This is similar to
meteorological reanalysis where an optimal field consistent with observations is generated.
The relative changes of the initial ozone concentrations after assimilation the observations

of multiple platforms are shown in Figure 18. Decreases of initial ozone are seen below
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2000 m, and over most of the land area in the domain. This is consistent with a separate
analysis of the STEM prediction with ICARTT observations which indicates that the
NO, and some VOC (volatile organic compounds) emissions are over-estimated with the
NEI 2001 inventory [Mena-Carrasco et al., 2006]. There is a region between 4000-8000 m,
and close to the west boundary, that sees increases of initial ozone concentrations. This
suggests that the boundary conditions require adjustment (which can be added to the
4D-Var control variables).

Figure 16 shows the domain-averaged vertical profiles (with standard deviation) con-
structed using the observations and the corresponding predictions for Case 9 and the base
case. It clearly shows that the model biases both below and and under 3000 m are sub-
stantially reduced for Case 9. The predicted values for Case 9, now show a negative bias
at low to mid- altitudes and a positive bias at high altitudes. Figure 17 gives the quantile-
quantile (q-q) plots of the ozone observations versus the corresponding predictions, for
the base case and Case 9. Each point in a quantile-quantile plot shows the values from
two data sets that has the same quantile, i.e. the fraction of data points that fall below
the given value. The q-q plot of the base case clearly shows the predictions are biased
high overall. After assimilation, Case 9 generates a predicted ozone field that has a very
similar population distribution as the observations. The g-q plot of Case 9 also indicates
that the model has difficulty to generate low ozone concentrations (< 20 ppbv) in the
data assimilation time period. This is largely due to the coarse model resolution.

As the chemical species are closely connected through various photochemical reactions,
the adjustment of initial ozone concentrations will affect the predictions of other species.

The impact of the assimilation of ozone observations on the predictions of selected chemical
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species are listed in Tables 7-9. The largest impacts are found for NO where the RMS
mean of NO prediction changes are 78.8% at 1600 UT (1200 EDT), and then decreases
to 26.8% at 2400 UT (2000 EDT). Figure 19 shows the iso-surfaces of 100% increase of
predicted NO concentration at 1600 UT. It is the data-rich region that is more affected
by assimilation than the other areas. This highly impacted region extends to =~ 3000 m
in height. Note that NO predictions are increased over almost the whole domain, which
is also indicated by the large average change in Table 7. Figure 19 also shows the iso-
surfaces of £5% change in OH at 1600 UT, which displays a different distribution than
that of NO. Although ozone is often highly correlated with C'O, the changes in initial
ozone concentrations has little effect on the C'O predictions, with the maximum change
as 1.1%, reflecting that the feedbacks operate at a much longer time scale than studied

here.

6. Summary and discussion

The ICARTT experiments produced comprehensive observation data sets and intense
modeling applications upon which to study important aspects of data assimilation. Key
elements include characterization of errors. The model error correlation has been con-
structed using the NMC approach. It is implemented into a 4D-Var regional chemical
data assimilation system with a truncated SVD regularization method is introduced. The
observational (Hollingworth-Lonnberg) method was used to calculate the weighting be-
tween observations and model backgrounds in 4D-Var. It should be noted the increase of
the the computational time is minimal using the current approach, compared to using a
diagonal matrix for the background error covariance. The weighting between the model

and observations in determining the final optimal analysis depends on the both the back-
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ground and observational error covariance matrices, which are objectively approximated
in the current application.

Ozone observations by different platforms during the ICARTT field experiment were
assimilated into the regional CTM. It is found with little exception that assimilating
observations from each individual platform improves the model predictions against the
withheld observations. The information content of the observations depends on the model
resolution and it can be approximated by the number of four-dimensional (in space and
time) grid cells that the observations spread over.

In the current data assimilation experiments, only initial ozone concentrations are ad-
justed. This limits the effect of the data assimilation as model predictions at some lo-
cations are more affected by the boundary conditions or emission inventories. Adjusting
initial concentrations of other species will probably help to improve the model predictions
and air quality forecasts. In addition, the benefit of assimilating satellite observations and
measurements of additional species need to be exploited. These issues will be addressed

in future papers.
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Table 1. Ozone observations on July 20, 2004.

Observations Description
AIRNOW EPA surface stations, hourly averaged data used
DC3 Vertical profile of ozone mixing ratio from lidar

MOZ-FN MOZAIC, Frankfurt-New York flight

MOZ-NF MOZAIC, New York-Frankfurt flight

P3 NOAA P3-B measurement

AIRMAP UV SPECTROSCOPY measurement at 4 sites
DC8-In NASA In Situ Ozone via Nitric Oxide Chemiluminescence
DC8-Li DC-8 Composite Tropospheric Ozone Cross-Sections
RHODE Ozonesonde/Radiosonde data from Narragansett, RI
RONBR | Ozonesonde/Radiosonde data from the R/V Ronald H. Brown
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regularization, and singular value o, of spatial correlation matrices X, Y, and Z.

Matrix | Size(n x n) | o1 On condition number | p Op
X 25 x 25 |7.49]2.65 x 102 283 14|7.57 x 102
Y 22 x22 |7.35]2.65x 102 277 12]8.35 x 102
Z 21 x 21 ]9.97|7.69 x 107 1.30 x 107 8 |1.18 x 10!

Maximum and minimum singular values, condition number, rank p in TSVD

Table 3. Model bias and RMS error of the base run, calculated against each observation

platform. Units: ppbv. See Tablel for descriptions of the observations.

Error | AIRNOW | DC3 | MOZ-FN | MOZ-NF | P3 | AIRMAP | DC8-In | DC8-Li | RHODE | RONBR

Bias 15.3 16.0 1.8 4.2 9.8 18.3 -84 | -3.8 3.7 9.4

RMS 26.3 22.8 | 20.7 15.3 |18.3| 23.9 186 | 17.9 134 24.3
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Table 4. Descriptions of data assimilation tests. Listed observation time and number

are after averaging the measurements inside each grid cell. Such averaging is extended

to include the time dimension, which has a resolution of 15 minutes.

descriptions of the observations.

See Tablel for

Case | Assimilated Observations Time Number
1 AIRNOW 13002400 UT, hourly 2075
2 DC3 1852-2356 UT 412
3 MOZ-FN, MOZ-NF 1947-2007 UT, 2238-2252 UT 38
4 P3 1412-2207 UT 208
5 AIRMAP 12152400 UT 192
6 DC8-In 14162207 UT 138
7 DC8-Li 1429-2137 UT 465
8 RHODE, RONBR 1810-1822 UT, 1900-1921 UT 35
9 All above 12002400 UT 3563
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5. RMS error changes of model predictions against each observation platform,

over the base case after assimilation. “()” indicates observations of the platform have been

assimilated in the data assimilation experiment. Units: ppbv. See Table4 for descriptions

of the data assimilation tests.

Case | AIRNOW | DC3 | MOZ-FN | MOZ-NF | P3 | AIRMAP | DC8-In | DC8-Li | RHODE | RONBR
1 | (-12.9) | -6.0 | -4.0 4.0 -5.8 | -7.6 -08 | -0.7 | -3.6 -3.3
2 -0.9 |(-8.0)| -6.0 -2.4 -4.2 -3.1 -0.5 0.1 -2.3 -0.2
3 | -03 |-24 | (-74) | (49 | -12 | 00 |-02|-02 | -02 | -0.1
4 -1.3 -59 | -44 -3.0 [(-7.4)| -3.1 -0.3 | -04 | -35 0.0
5 -0.6 -0.8 0.1 0.0 -0.9 | (-10.2) | -0.5 | 0.0 -0.5 -1.1
6 -0.3 -0.7 -1.2 -0.1 -1.0 -3.6 (-6.1) | -1.4 -1.0 -0.6
7 -1.4 -2.3 -4.6 -2.8 -1.8 -0.1 -3.2 | (-6.9)| -1.6 -0.3
8 | -02 |-02| 04 | 01 |-02] -1.0 | -04 | -0.2 | (-6.4) |(-12.9)
9 -12.2 | -70 | -85 4.0 -7.3 | -9.1 69 | -6.7 | -85 | -10.0

Table 6. Model bias and RMS error for Case 9, calculated against each observation

platform. Units: ppbv. See Tablel for descriptions of the observations.

Error | AIRNOW | DC3 | MOZ-FN | MOZ-NF | P3 | AIRMAP | DC8-In | DC8-Li | RHODE | RONBR

Bias 0.7 -5.1 -5.3 -14.5 |-48| -2.6 -4.5 4.4 -4.0 4.1

RMS 14.1 15.8 | 12.2 19.3 |11.0| 14.8 11.7 | 11.2 4.9 14.3
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Table 7.  Average model prediction changes after assimilating ozone measurements
from all platforms (Case 9 over the base case), normalized by average concentrations on
each level before taking domain average. ACET: Acetone; ARO1: Aromatics with kOH
< 2 x 10* ppm~tmin~!; ARO1: Aromatics with kOH > 2 x 10* ppm~'min~!; PAN:
Peroxy acetyl nitrate; PAN2: PPN (peroxypropionyl nitrate) and other higher alkyl PAN

analogues.

Time O3 NO | NO, CO |HCHO|ACET | ARO1 | ARO2 | PAN | PAN2 | OH

1600 UT |-0.061 | 0.136 | 0.029 | 0.000 | 0.024 | 0.000 | -0.001 |-0.001 |-0.027 |-0.036 | 0.005

2000 UT |-0.045|0.071 | 0.032|0.000 | 0.018 | 0.000 |{-0.001 | 0.001 |-0.027|-0.049 | 0.005

2400 UT |-0.040 | 0.029 | 0.022 | 0.000 | 0.014 | 0.000 |-0.002 |-0.002|-0.028 | -0.053 | 0.012

Table 8. RMS mean of model prediction changes after assimilating ozone measurements
from all platforms (Case 9 over the base case), normalized by average concentrations on

each level before taking domain RMS.

Time 05 NO | NO, | CO |HCHO| ACET | ARO1 | ARO2 | PAN | PAN2| OH

1600 UT | 0.168 [ 0.788 | 0.101 | 0.000 | 0.059 | 0.003 | 0.033|0.111|0.075|0.093 | 0.044

2000 UT [ 0.129]0.616 | 0.138 | 0.001 | 0.045 | 0.005 [ 0.101 { 0.210 | 0.080 | 0.121 | 0.042

2400 UT | 0.114 | 0.268 | 0.108 | 0.001 | 0.036 | 0.004 | 0.057 [ 0.109|0.078 | 0.124 | 0.050

DRAFT July 5, 2006, 4:39pm DRAFT



X-36 CHAI ET AL.: 4D-VAR EXPERIMENTS WITH ICARTT OZONE MEASUREMENTS

Table 9. Maximum model prediction change after assimilating ozone measurements
from all platforms (Case 9 over the base case), normalized by average concentrations on

each level. Maximum change is based on the magnitude of the normalized changes.

Time 05 NO NO CO |HCHO| ACET | ARO1| ARO2 | PAN | PAN2 | OH

1600 UT |-0.827 | 24.899 |-2.992|0.006 | 0.371 |-0.073|1.693 | 7.655 |-0.950 |-0.936 |-0.696

2000 UT |-0.682|21.948 | 5.105 | 0.015 | 0.256 |-0.129|4.070 | 10.170|-1.394 | -1.483 | -0.749

2400 UT |-0.613 | 8.736 | 3.099 | 0.011 | 0.244 |-0.113 | 1.757 | 3.756 |-1.172|-1.219|-0.504
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Figure 1. Computational grid and AIRNOW stations (color coded by ozone measure-
ments at 1900 UT on July 20, 2004).
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Figure 2. Flight tracks, AIRMAP stations, and ozonesonde locations.
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Figure 3. Domain-averaged AIRNOW ozone concentration and standard deviation

inside a grid cell, on July 20, 2004.
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Figure 4. Model error correlation coefficients between vertical levels. The non-uniform

vertical grid is indicated by the height of each level, shown as the mesh in the plot.
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Figure 5. Model error correlation coefficients between vertical levels, as a function of
v
Az, the distance between two levels. The line indicates e 22 , where [, = 2500 m.
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Figure 6. Model error correlation coefficients as a function of horizontal distance Az

N
7

or Ay. They can be fitted by e »"* | where [, = 270 km.
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Correlation coefficients of observational increments between AIRNOW sta-

tions, as a function of the horizontal distance (Ah) between stations. The distance in-

crement is 1 km, within which the average correlation of multiple station pairs is shown.

The line shown is R,e +"® | where [;, = 270 km and R, = 0.6.
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Figure 8. Vertical correlation of model errors, Z (left) and Z, (Right). Z is used to
approximate the correlation calculated through the NMC approach, shown in Figure 4.

Z, is after TSVD regularization. The non-uniform vertical grid is indicated by the height

of each level, shown as the mesh in the plot.
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Wind fields at 1600 UT and 2000 UT, at h=990 m and 3553 m.
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Figure 10. Predicted surface ozone concentrations at 2000 UT (1600 EDT) for the base
case (left) and Case 9 (right). AIRNOW and AIRMAP measurements are also indicated

by the color-coded circles (slightly larger and white-outlined circles for AIRMAP).
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Figure 11. AIRMAP ozone observations and corresponding model predictions by the
base case and Case 9. Observations have been reduced according to model time resolution.
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Ozone profiles by two ozonesondes (RHODE and RONBR), and corre-

sponding model predictions by the base case and Case 9. Observations have been reduced

according to model resolutions, both in time and space.
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Figure 13. DC-8lidar ozone observations (top) and the corresponding model predictions

by the base case (middle) and Case 9 (bottom). Lidar observations have been reduced

according to model resolutions, both in time and space.

DRAFT July 5, 2006, 4:39pm DRAFT



X -50 CHAI ET AL.: 4D-VAR EXPERIMENTS WITH ICARTT OZONE MEASUREMENTS

140 10000 140 10000
- + (B)bservatlon [ *\‘ : I + Observation :
ok ase case J | ] 120 F Base case i
I Case 9 T \ I ——— Case9 [ .
| ————— Height / \ -|8000 r ——— Height [ ! 80
| | ; \ ]
100 |- 100 [ | g
s [ 2 T |
i 6000 = L {6000 =
2 gL E  Ssof 1 E
st = = £
[ = 3 1 =
o [ > g I 1 2
S 6ol H 4000 T R °on ‘%4000 T
o [ o o
wof 40 / ]
i i N
- 2000 B i | 42000
ok 20k ! A
L o / "
| = v _v,,/‘ \,
oLl 0 oL~ P - - - T . P
14 145 15.5 16 20 205 22

15 21 215
Time (UT hr) Time (UT hr)
Figure 14. DC-8 in situ ozone observations and the corresponding model predictions by

the base case and Case 9. Observations have been reduced according to model resolutions,

both in time and space.
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P3 ozone observations and the corresponding model predictions by the base

case and Case 9. Observations have been reduced according to model resolutions, both in

time and space.
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Figure 16. Domain-averaged vertical profiles (with standard deviation) of the ozone
observations and the corresponding predictions before (base case) and after assimilation

of all observations (Case 9).
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Figure 17. Quantile-quantile plots of the ozone observations (using all data) versus the
corresponding predictions, for the base case and Case 9. The quantile increment is 2%,

i.e. quantiles of 2%, 4%, - - -, 96%, 98% are shown.
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Figure 18. Relative changes of initial O3 concentration. Averaged values are shown in
top, west, and south views. Two iso-surfaces of the initial O3 concentration changes (red:
20% increase; blue: 20% decrease) are shown in the 3-D plots. The relative changes are

based on Case 9 over the base case, and normalized by average concentrations on each

level.
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Figure 19. Relative changes of predicted NO (left) and OH (right) concentrations at
1600 UT. Iso-surfaces of 100% increase for NO, 5% increase (red) and 5% decrease (blue)
for OH are shown. The relative changes are based on Case 9 over the base case, and

normalized by average concentrations on each level.
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