– Track recovery of the ozone layer

– Understand aspects of how composition affects climate

– Quantify aspects of pollution in the upper troposphere
The EOS MLS Instrument

- Advanced follow-on to UARS MLS launched in 1991
 - radiometers in 5 broad bands between 118 GHz, 2.5 THz
 - 455 kg, 535 W, 100 kb/s data, 28 spectrometers

- Pioneers satellite measurements over full submillimeter wavelength region (0.1 - 3 mm)
 - enabled by new technology, mostly developed by JPL
Solid lines indicate useful individual profile measurements are generally obtained. Dashed lines indicate that averages are generally needed for useful precision.
MLS Measurement of Cloud Ice in Upper Troposphere

Will improve global circulation models (GCMs) used for weather and climate forecasts and help quantify the upper tropospheric (UT) hydrological cycle, including water vapor feedbacks on climate change.

- UT cloud ice from MLS, ECMWF analyses, and various GCMs
 - Li et al., GRL 32, L14826, 2005

- Cloud ice increase with sea surface temperature >300 K leads to convective moistening of UT, and H₂O feedback ~3x above that implied solely by thermodynamics
 - Su et al., GRL 33, L05709, 2006
MLS Measurement of CO in Upper Troposphere

CO from biofuels and from biomass burning is lofted by convection, with a major pathway over Tibet into the stratosphere.

- Detection of CO pollution lofted to the upper troposphere and temporarily ‘trapped’ in anticyclone over south Asia
 - Filipiak et al., GRL 32, L14825, 2005
 - Li et al., GRL 32, L14826, 2005

- Quantifying convective transport over the Tibetan plateau – and discovering it is a ‘short circuit’ to the global stratosphere
 - Uses data primarily from MLS, but also from MODIS, AIRS and TRMM

- Detection of ‘CO tape recorder’ in lower stratosphere, and linking it to seasonal changes in biomass burning
 - Reproduced by GMI chemical transport model
 - Schoeberl et al., GRL, in review
MLS Upper Troposphere Weekly Mean Maps for 9-15 Apr 2006 at 100 hPa

White contours: GMAO PV = 3.5 (10^6 K m^2 kg^-1 s^-1) indicative of dynamical tropopause
Black contours: GMAO OLR = 240 W/m^2 for IWC map and IWC = 0.3 mg/m^3 for other maps indicative of deep convection

Produced by Jonathan Jiang of the MLS team at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA, from EOS MLS, GEOS-CHEM and GMAO GEOS-4 data. JPL Clearance CL#05-3903
MLS Upper Troposphere Weekly Mean Maps for 9-15 Apr 2006 at 147 hPa

White contours: GMAO PV = 3.5 \(\text{10}^{-6}\text{Km}^2\text{kg}^{-1}\text{s}^{-1}\) indicative of dynamical tropopause

Black contours: GMAO OLR = 240 W/m^2 for IWC map and IWC = 1 mg/m^3 for other maps indicative of deep convection.

Produced by Jonathan Jiang of the MLS team at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA, from EOS MLS, GEOS-CHEM and GMAO GEOS-4 data. JPL Clearance CL#05-3903
MLS Upper Troposphere Weekly Mean Maps for 9-15 Apr 2006 at 215 hPa

White contours: GMAO PV = 3.5 \((\text{Km}^2\text{kg}^{-1}\text{s}^{-1}) \) indicative of dynamical tropopause

Black contours: GMAO OLR = 240 W/m² for IWC map and IWC = 3 mg/m² for other maps indicative of deep convection

Produced by Jonathan Jiang of the MLS team at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA, from EOS MLS, GEOS-CHEM and GMAO GEOS-4 data. JPL Clearance CL#05-3903
MLS Upper Troposphere Weekly Mean Maps for 9-15 Apr 2006 at 316 hPa

White contours: GMAO PV = 3.5 (10^6 m^2/kg/s) indicative of dynamical tropopause

Black contours: GMAO OLR = 240 W/m^2 for IWC map and IWC = 3 mg/m^3 for other maps indicative of deep convection

Produced by Jonathan Jiang of the MLS team at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA, from EOS MLS, GEOS-CHEM and GMAO GEOS-4 data. JPL Clearance CL#05-3903