INTRODUCTION

Global annual estimates of lightning production of NO (NO + NO2) are mostly in the range of 58 x 1027 to 9.6 x 1028 molecules. These estimates are based on data from the National Oceanic and Atmospheric Administration (NOAA). The total lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.

The lightning mole fraction is defined as the ratio of the number of NO molecules emitted by lightning to the number of NO molecules in the atmosphere. The NO mole fraction is defined as the ratio of the number of NO molecules in the atmosphere to the number of NO molecules in the air.

The lightning mole fraction is about 0.07 parts per billion (ppb) and the NO mole fraction is about 0.025 ppb. The total mole fraction of NOx (NO + NO2) is about 0.1 ppb.