RAMS, Some Crystal-Face Preliminary Results and Analysis

Francisco P. J. Valero, Brett Bush, Quyen N. Hart, David Marsden and Shelly K. Pope

Scripps institution of Oceanography, University of California, San Diego
Conclusions and Progress so Far

- Collected and archived good quality radiation data from the ER-2 and WB-57 (IR radiances and irradiances plus Solar broad-band irradiances and Visible Spectral (seven channels) Direct/Diffuse (WB-57 only)).

- Studied one aspect of the radiative impact of the coupled ocean-atmosphere system. The water vapor-clear sky greenhouse effect in the C-F domain.

- Compared Model calculations and satellite observations (Ceres) with data for “clear” and “cloudy” sky conditions.

- Started analysis to retrieve cloud properties from radiance and irradiance measurements.
RAMS ER-2 IR Radiances and Irradiances July 09, 2002

RAMS ER-2 Data From 9 July 2002

- 4-40 μm Radiance
- 8-12 μm Radiance
- 4-40 μm Flux

NFOV Radiance (W m⁻² Ster⁻¹)

Time (GMT hr)

IRBR Flux (W m⁻²)

Francisco P. J. Valero
Measured and Modeled IR Irradiances and Sea Surface Temperatures

CRYSTAL-FACE, 26Jul02 ER-2 Data

Flux (W/m²)

Temperature

GMT Time

26Jul02_sst_vs_irbr_flux_feb2003.xls
2/6/03

Francisco P. J. Valero
Calculated and Measured LW Upwelling Flux at 20 km; Marine Aerosol, $\tau = 0.20$

![Graph showing calculated and measured LW upwelling flux at 20 km for different models with and without aerosol correction, along with corresponding sonde times on July 9, 2002.](image)

Francisco P. J. Valero
Calculated and Measured LW Downwelling Flux at 20 km

July 09, 2002

Flux (W/m²)

Sonde Times (hhmmss)

160143
164404
195405

CRM corrected
RRTM_LW corrected
Fu-Liou corrected with Aerosol
Streamer with Aerosol
SBDART with aerosol
Modtran4 with Aerosol
IRBR with Aerosol

Francisco P. J. Valero
Calculated and Measured LW Upwelling Flux at 20 km; Marine Aerosol, $\tau = 0.20$

![Graph showing flux values at different times and models](image)

July 26, 2002
Calculated and Measured LW Upwelling Flux at 20 km; Marine Aerosol, $\tau = 0.20$

July 26, 2002

Sonde Times (hhmmss)

Flux (W/m²)

CRM corrected
RRTM_LW corrected
Fu-Liou corrected with Aerosol
Streamer with Aerosol
SBDART with aerosol
Modtran4 with Aerosol
IRBR
CERES, RAMS (IRBBR and NFOV)
Measured Greenhouse Absorption

Broadband Greenhouse Absorption (26 July 2002)

- NFOV: $dG_0/dT_s = 9.7 +/− 0.3$
- IRBR: $dG_0/dT_s = 13.2 +/− 0.8$
- CERES: $dG_0/dT_s = 14.9 +/− 0.60$

Francisco P. J. Valero
Comparison of Greenhouse, July 9 and July 26, 2002
Ratio of Water July 9/July 26
IR irradiance CRYSTAL-FACE, July 9, 2002
Cloud \(\tau: 2,4,8,10,15,20,25,50,75,100 \) (filled)
Cloud \(\tau: 0.25,0.50,0.75,1.0,1.25,1.5,1.75 \) (open)

- IRBRnad
- IRBR Upwelling Flux (W/m\(^2\))
- Sonde 174240
- Sonde 180956
- Sonde 183008
- SBDART
- Fu-Liou
- Streamer

Francisco P. J. Valero
Solar Irr. CRYSTAL-FACE, July 09, 2002
Cloud τ: 2,4,8,10,15,20,25,50,75,100 (filled)
Cloud τ: 0.25,0.50,0.75,1.0,1.25,1.5,1.75 (open)

- TSBR nadir
- nre=100um
- nre=30um
- nre=100um
- nre=30um
- nre=100um
- nre=30um

Sonde 174240
Sonde 180956
Sonde 183008

SBDART
Fu-Liou
Streamer

Francisco P. J. Valero
Conclusions and Progress so Far

- Collected and archived good quality radiation data from the ER-2 and WB-57 (IR radiances and irradiances plus Solar broad-band irradiances and Visible Spectral (seven channels) Direct/Diffuse (WB-57 only)).

- Studied one aspect of the radiative impact of the coupled ocean-atmosphere system. The water vapor-clear sky greenhouse effect in the C-F domain.

- Compared Model calculations and satellite observations (Ceres) with data for “clear” and “cloudy” sky conditions.

- Started analysis to retrieve cloud properties from radiance and irradiance measurements.
ER-2/RAMS Measured Greenhouse Absorption

Broadband Greenhouse Absorption (9 July 2002)

July 09, 2002

- NFOV: $\frac{dG_o}{dT_s} = 13.4 \pm 1.00$
- IRBR: $\frac{dG_o}{dT_s} = 18.6 \pm 1.1$

Francisco P. J. Valero
RAMS ER-2 IR Radiances and Irradiiances July 26, 2002