How does convection moisten the upper troposphere?

A. E. Dessler
Earth System Science Interdisciplinary Center
University of Maryland
Weinstock et al.
Baumgardner et al.
“We expect that most of the analyses presented will be at an intermediate stage.”

- The Crystal Brain Trust
Sherwood, 1996; Salatthe and Hartmann, 1997, 2000; Pierrehumbert and Roca, 1998; Dessler and Sherwood, 2000; Gettelman et al., 2000; Folkins et al., 2002
Folkins et al., 2002
Folkins et al., 2002
\[\rho = 0.93 \left(0.05 + 0.95 e^{-r/90} \right) \]
Particle radius (microns)

Cumulative mass

Particle radius (microns)
Preliminary conclusions

• Measurements show significant amounts of water in the UT in the form of ice
 – Most of the mass will either fall or evaporate within a few hours
 – Simple model indicates that this ice might significantly moisten UT
 – Not clear how to resolve this with other analyses
Next steps …

• Use unified size distributions, IWC
• Isotope data
• Trajectory simulations using MM5 winds, humidity
• Incorporate non-spherical particle physics

• We acknowledge support from the CRYSTAL-FACE program
UARS MLS UTH, v4.90, Aug. 1992, 215 hPa
[Dessler and Sherwood, JGR, 2000]
100 micron particle
20 micron particle
500 micron particle