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Objectives
& Approach

Qur goal is to document the radiative and water budgets
of tropical cirrus, relate one to the other and each to
governing environmental factors.

Qur approach is to ‘assimilate’ multiple sources of
CRYSTAL data, obtained from multiple platforms.
Included in this approach are the:

* Inversion of lidar data to obtain profiles of visible
extinction

* Inversion of MAS data to obtain bulk cloud optical
properties

* Inversion of mm radar data, combined with optical
depth to obtain ice contents and microphysics.

« Evaluate these using in-situ microphysical data

+ Use these data to simulate the radiative budgets of
cirrus and compare to relevant measured fluxes

« Use these data to evaluate cloud model simulations of
selected cases and explore relationships between
convection and cirrus

Radiative & Water Budgets of Tropical Cirrus
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Radar Microphysics Retrievals
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adar retrieval is formulated in an optimal estimation
ach where the measurements, y, are expressed In
of a forward model that is a function of the quantity to

* [nversion proceeds through minimization of a cost function,
where the forward model is constrained by a column visible
optical depth estimate from the Cloud Physics Lidar (CPL).

* Assume ice crystal size spectra follows the gamma distribution.

with height.
« Knowns: Reflectivity Z (height), t
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Radar IWC Algorithm

Benedetti, A., G.L. Stephens, and J.M. Haynes, 2003: Ice cloud microphysics retrievals from millimeter radar and visible
optical depth using an estimation theory approach. fo appear in J Geophys. Res.

Lidar algorithm

Stephens, G.L., R.J. Engelen, M. Vaughan, and T.L. Anderson, 2001: Toward retrieving properties of the tenuous
atmosphere using space-based lidar measurements. J. Geophy. Res., 106, 28143-28157.

Further
assume that number concentration, N,, and spectrum width, v, are constant

Retrieved

IWC, eff radi

Lidar Retrieval of Cirrus of
Extinction Coefficient

CPL Attenuated Backscatter (m~1)

Z2.530 =4 EZ.B15
Tume {hr}

Extinction cosfficient o= (km™2}

Time [hr)

Extinction profiles retrieved
l from lidar backs catter:

example for upper layer
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The lidar equation is inverted by
an optimal estimation technigue
to obtain a vertical profile of

e extinction:
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The retrieval is constrained by
visible optical depth and retri
a vertically averaged value
backscatter to extinction

Radiative Heating Rates

Cloudy minus clear LW heating rate (K day~1)

oud heating rates can be
distributions retrieved through the
dar method shown at left.
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For the segment shown at left, a high
altitude tenuous cirrus layer was
continually detected by lidar but only
Intermittently visible to the radar. VWhat
Is the difference in cloud heating rate
between these two cases?

The cloud observed by the lidar was simulated using lidar-estimated
visible optical depth to estimate the ice water path of the cloud.

=

be used in conjunction with
ments from either radar or lidar
cloud particle effective radius and
h. The optimal estimation retrieval
by Cooper et al. (2003) for infrared
s Is currently being expanded to
visible and nir wavelengths both to
ize information content and to insure
ved cloud properties are consistent with all

Radar
Reflectivity

The retrieval of cloud microphysical properi
from MAS as described above can easil
incorporated within the work of Benedetti
(2003) to determine the vertical profiles ¢
cloud properties. Cloud boundary In
from the radar is used to determine t
depth constraint, which in turn, Is us
the radar reflectivity. See Cooper &
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Heating rates were then calculated using BUGSrad:
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Radiative Heating Algorithm and Example Approach

uncertainties. To appear in J. Climate.
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L'Ecuyer, T.5. and G.L. Stephens, 2003: The tropical oceanic energy budget from the TRMM perspective. Part |: algorithm and

Stephens, G.L., P.M. Gabiel, and PT Partain, 2001: Parameterization of atmospheric radiative transfer. Part |. validity of simple

Cooper. S.J., T.S. L'Ecuyer, and G.S. Stephens, 2003: The impact_of explicit cloud boundary information on ice cloud

microphysical property retrievals from infrared radiances. Submitted to J. Geophys. Res.



